A genetic association study is a complicated process that involves collecting phenotypic data, generating genotypic data, analyzing associations between genotypic and phenotypic data, and interpreting genetic biomarkers identified. SNPTrack is an integrated bioinformatics system developed by the US Food and Drug Administration (FDA) to support the review and analysis of pharmacogenetics data resulting from FDA research or submitted by sponsors. The system integrates data management, analysis, and interpretation in a single platform for genetic association studies.
View Article and Find Full Text PDFBackground: Large amounts of mammalian protein-protein interaction (PPI) data have been generated and are available for public use. From a systems biology perspective, Proteins/genes interactions encode the key mechanisms distinguishing disease and health, and such mechanisms can be uncovered through network analysis. An effective network analysis tool should integrate different content-specific PPI databases into a comprehensive network format with a user-friendly platform to identify key functional modules/pathways and the underlying mechanisms of disease and toxicity.
View Article and Find Full Text PDFThe era of personalized medicine for cancer therapeutics has taken an important step forward in making accurate prognoses for individual patients with the adoption of high-throughput microarray technology. However, microarray technology in cancer diagnosis or prognosis has been primarily used for the statistical evaluation of patient populations, and thus excludes inter-individual variability and patient-specific predictions. Here we propose a metric called clinical confidence that serves as a measure of prognostic reliability to facilitate the shift from population-wide to personalized cancer prognosis using microarray-based predictive models.
View Article and Find Full Text PDFDrug-induced liver injury (DILI) is a significant concern in drug development due to the poor concordance between preclinical and clinical findings of liver toxicity. We hypothesized that the DILI types (hepatotoxic side effects) seen in the clinic can be translated into the development of predictive in silico models for use in the drug discovery phase. We identified 13 hepatotoxic side effects with high accuracy for classifying marketed drugs for their DILI potential.
View Article and Find Full Text PDFBackground: Protein-protein interactions (PPIs) are a critical component for many underlying biological processes. A PPI network can provide insight into the mechanisms of these processes, as well as the relationships among different proteins and toxicants that are potentially involved in the processes. There are many PPI databases publicly available, each with a specific focus.
View Article and Find Full Text PDFRNA-Seq has been increasingly used for the quantification and characterization of transcriptomes. The ongoing development of the technology promises the more accurate measurement of gene expression. However, its benefits over widely accepted microarray technologies have not been adequately assessed, especially in toxicogenomics studies.
View Article and Find Full Text PDFThe primary testing strategy to identify nongenotoxic carcinogens largely relies on the 2-year rodent bioassay, which is time-consuming and labor-intensive. There is an increasing effort to develop alternative approaches to prioritize the chemicals for, supplement, or even replace the cancer bioassay. In silico approaches based on quantitative structure-activity relationships (QSAR) are rapid and inexpensive and thus have been investigated for such purposes.
View Article and Find Full Text PDFBMC Bioinformatics
October 2010
Background: Endocrine disruptors (EDs) and their broad range of potential adverse effects in humans and other animals have been a concern for nearly two decades. Many putative EDs are widely used in commercial products regulated by the Food and Drug Administration (FDA) such as food packaging materials, ingredients of cosmetics, medical and dental devices, and drugs. The Endocrine Disruptor Knowledge Base (EDKB) project was initiated in the mid 1990's by the FDA as a resource for the study of EDs.
View Article and Find Full Text PDFBackground: Advances in microbial genomics and bioinformatics are offering greater insights into the emergence and spread of foodborne pathogens in outbreak scenarios. The Food and Drug Administration (FDA) has developed a genomics tool, ArrayTrack™, which provides extensive functionalities to manage, analyze, and interpret genomic data for mammalian species. ArrayTrack™ has been widely adopted by the research community and used for pharmacogenomics data review in the FDA's Voluntary Genomics Data Submission program.
View Article and Find Full Text PDF