Genetic diversity and population structure analyses showed progressively narrowed diversity in US Upland cotton compared to land races. GWAS identified genomic regions and candidate genes for photoperiod sensitivity in cotton. Six hundred fifty-seven accessions that included elite cotton germplasm (DIV panel), lines of a public cotton breeding program (FB panel), and tropical landrace accessions (TLA panel) of Gossypium hirsutum L.
View Article and Find Full Text PDFIntrogression of superior fiber traits from Pima cotton (Gossypium barbadense, GB) into high yield Upland cotton (G. hirsutum) has been a breeding objective for many years in a few breeding programs in the world. However, progress has been very slow due to introgression barriers resulting from whole genome hybridization between the two species.
View Article and Find Full Text PDFObservable qualitative traits are relatively stable across environments and are commonly used to evaluate crop genetic diversity. Recently, molecular markers have largely superseded describing phenotypes in diversity surveys. However, qualitative descriptors are useful in cataloging germplasm collections and for describing new germplasm in patents, publications, and/or the Plant Variety Protection (PVP) system.
View Article and Find Full Text PDFEthyl methanesulfonate (EMS) mutagenesis offers important advantages for improving crops, such as cotton, with limited diversity in elite gene pools. EMS-induced point mutations are less frequently associated with deleterious traits than alleles from wild or exotic germplasm. From 157 mutant lines that have significantly improved fiber properties, we focused on nine mutant lines here.
View Article and Find Full Text PDFThickness of cotton fiber, referred to as fiber maturity, is a key determinant of fiber quality, lint yield, and textile performance. The cotton immature fiber (im) mutant has been used to study fiber maturity since its fiber is thinner than the wild type near isogeneic line (NIL), Texas Marker-1 (TM-1). The im phenotype is caused by a single recessive mutation of a pentatricopeptide repeat (PPR) gene that reduces the activity of mitochondrial complex I and up-regulates stress responsive genes.
View Article and Find Full Text PDFf. sp. race 4 (FOV4) is a devastating fungus pathogen that causes Fusarium wilt in both domesticated cotton species, (Upland) and (Pima).
View Article and Find Full Text PDFBackground: Cotton fibers provide a powerful model for studying cell differentiation and elongation. Each cotton fiber is a singular and elongated cell derived from epidermal-layer cells of a cotton seed. Efforts to understand this dramatic developmental shift have been impeded by the difficulty of separation between fiber and epidermal cells.
View Article and Find Full Text PDFTraditional breeding techniques are proven, but additional knowledge learned from genome sequencing provides vast new data that might help identify gene targets for improving cotton sustainability. CRISPR/Cas9 provides a powerful tool for precision cotton breeding. Here, we discuss the opportunities and challenges of genome sequencing and editing for cotton improvement.
View Article and Find Full Text PDFGene introgression from wild species has been shown to be a feasible approach for fiber quality improvement in Upland cotton. Previously, we developed an interspecific × advanced-backcross population and mapped over one hundred QTL for fiber quality traits. In the current study, a trait-based selective genotyping approach was utilized to prioritize a small subset of introgression lines with high phenotypic values for different fiber quality traits, to simultaneously validate multiple fiber quality QTL in a single experiment.
View Article and Find Full Text PDFPolyploidy is an evolutionary innovation for many animals and all flowering plants, but its impact on selection and domestication remains elusive. Here we analyze genome evolution and diversification for all five allopolyploid cotton species, including economically important Upland and Pima cottons. Although these polyploid genomes are conserved in gene content and synteny, they have diversified by subgenomic transposon exchanges that equilibrate genome size, evolutionary rate heterogeneities and positive selection between homoeologs within and among lineages.
View Article and Find Full Text PDFBackground: Improving fiber quality and yield are the primary research objectives in cotton breeding for enhancing the economic viability and sustainability of Upland cotton production. Identifying the quantitative trait loci (QTL) for fiber quality and yield traits using the high-density SNP-based genetic maps allows for bridging genomics with cotton breeding through marker assisted and genomic selection. In this study, a recombinant inbred line (RIL) population, derived from cross between two parental accessions, which represent broad allele diversity in Upland cotton, was used to construct high-density SNP-based linkage maps and to map the QTLs controlling important cotton traits.
View Article and Find Full Text PDFThe use of genomic selection (GS) has stimulated a new way to utilize molecular markers in breeding for complex traits in the absence of phenotypic data. GS can potentially decrease breeding cycle by selecting the progeny in the early stages. The objective of this study was to experimentally evaluate the potential value of genomic selection in Upland cotton breeding.
View Article and Find Full Text PDFSignificant associations between candidate genes and six major cotton fiber quality traits were identified in a MAGIC population using GWAS and whole genome sequencing. Upland cotton (Gossypium hirsutum L.) is the world's major renewable source of fibers for textiles.
View Article and Find Full Text PDFLike those of many agricultural crops, the cultivated cotton is an allotetraploid and has a large genome (~2.5 gigabase pairs). The two sub genomes, A and D, are highly similar but unequally sized and repeat-rich, which pose significant challenges for accurate genome reconstruction using standard approaches.
View Article and Find Full Text PDFBackground: Cotton germplasm resources contain beneficial alleles that can be exploited to develop germplasm adapted to emerging environmental and climate conditions. Accessions and lines have traditionally been characterized based on phenotypes, but phenotypic profiles are limited by the cost, time, and space required to make visual observations and measurements. With advances in molecular genetic methods, genotypic profiles are increasingly able to identify differences among accessions due to the larger number of genetic markers that can be measured.
View Article and Find Full Text PDFLeaf shape varies spectacularly among plants. Leaves are the primary source of photoassimilate in crop plants, and understanding the genetic basis of variation in leaf morphology is critical to improving agricultural productivity. Leaf shape played a unique role in cotton improvement, as breeders have selected for entire and lobed leaf morphs resulting from a single locus, okra (l-D), which is responsible for the major leaf shapes in cotton.
View Article and Find Full Text PDFBackground: Cotton supplies a great majority of natural fiber for the global textile industry. The negative correlation between yield and fiber quality has hindered breeders' ability to improve these traits simultaneously. A multi-parent advanced generation inter-cross (MAGIC) population developed through random-mating of multiple diverse parents has the ability to break this negative correlation.
View Article and Find Full Text PDFThe R2R3-MYB is one of the largest families of transcription factors, which have been implicated in multiple biological processes. There is great diversity in the number of R2R3-MYB genes in different plants. However, there is no report on genome-wide characterization of this gene family in cotton.
View Article and Find Full Text PDFTCP proteins are plant-specific transcription factors implicated to perform a variety of physiological functions during plant growth and development. In the current study, we performed for the first time the comprehensive analysis of TCP gene family in a diploid cotton species, Gossypium arboreum, including phylogenetic analysis, chromosome location, gene duplication status, gene structure and conserved motif analysis, as well as expression profiles in fiber at different developmental stages. Our results showed that G.
View Article and Find Full Text PDFA diversity reference set has been constructed for the Gossypium accessions in the US National Cotton Germplasm Collection to facilitate more extensive evaluation and utilization of accessions held in the Collection. A set of 105 mapped simple sequence repeat markers was used to study the allelic diversity of 1933 tetraploid Gossypium accessions representative of the range of diversity of the improved and wild accessions of G. hirsutum and G.
View Article and Find Full Text PDFSince uncertainty remains about how white rot fungi oxidize and degrade lignin in wood, it would be useful to monitor changes in fungal gene expression during the onset of ligninolysis on a natural substrate. We grew Phanerochaete chrysosporium on solid spruce wood and included oxidant-sensing beads bearing the fluorometric dye BODIPY 581/591 in the cultures. Confocal fluorescence microscopy of the beads showed that extracellular oxidation commenced 2 to 3 days after inoculation, coincident with cessation of fungal growth.
View Article and Find Full Text PDFUpland cotton (Gossypium hirsutum L.) has a narrow germplasm base, which constrains marker development and hampers intraspecific breeding. A pressing need exists for high-throughput single nucleotide polymorphism (SNP) markers that can be readily applied to germplasm in breeding and breeding-related research programs.
View Article and Find Full Text PDF