Stress corrosion cracking (SCC) can be a crucial problem in applying rare earth (RE) Magnesium alloys in environments where mechanical loads and electrochemical driven degradation processes interact. It has been proven already that the SCC behavior is associated with microstructural features, compositions, loading conditions, and corrosive media, especially in-vivo. However, it is still unclear when and how mechanisms acting on multiple scales and respective system descriptors predictable contribute to SCC for the wide set of existing Mg alloys.
View Article and Find Full Text PDFIn this work, the porosity of plasma electrolytic oxidation (PEO)-based coatings on Al- and Mg-based substrates was studied by two imaging techniques-namely, SEM and computer microtomography. Two approaches for porosity determination were chosen; relatively simple and fast SEM surface and cross-sectional imaging was compared with X-ray micro computed tomography (microCT) rendering. Differences between 2D and 3D porosity were demonstrated and explained.
View Article and Find Full Text PDFIn situ synchrotron radiation diffraction was performed during the compression of as-cast Mg-3Nd-Zn alloys with different amounts (0, 0.5, 1, and 2 wt %) of Zn addition at room temperature. During the tests, the acoustic emission signals of the samples were recorded.
View Article and Find Full Text PDFMg-4Nd base alloys with Zn additions of 3, 5 and 8 wt % were investigated with in situ synchrotron radiation diffraction during solidification. This method enabled the investigation of phase formation and transformation in the alloys. The diffraction results were supported with TEM observations on the as-solidified samples.
View Article and Find Full Text PDFThe mechanical properties of as-cast Mg-4Nd-xZn (x = 0, 3, 5 or 8 wt.%) alloys were investigated both in situ and ex situ in as-cast and solution-treated conditions. The additions of 3 or 5 wt.
View Article and Find Full Text PDF