Publications by authors named "Domonkos Dedeo"

Free fatty acid receptor 2 (FFAR2) is activated by short-chain fatty acids and expressed widely, including in white adipocytes and various immune and enteroendocrine cells. Using both wild-type human FFAR2 and a designer receptor exclusively activated by designer drug (DREADD) variant we explored the activation and phosphorylation profile of the receptor, both in heterologous cell lines and in tissues from transgenic knock-in mouse lines expressing either human FFAR2 or the FFAR2-DREADD. FFAR2 phospho-site-specific antisera targeting either pSer/pSer or pThr/pThr provided sensitive biomarkers of both constitutive and agonist-mediated phosphorylation as well as an effective means to visualise agonist-activated receptors in situ.

View Article and Find Full Text PDF

Free fatty acid receptor 2 (FFA2) is a sensor for short-chain fatty acids that has been identified as an interesting potential drug target for treatment of metabolic and inflammatory diseases. Although several ligand series are known for the receptor, there is still a need for improved compounds. One of the most potent and frequently used antagonists is the amide-substituted phenylbutanoic acid known as CATPB (1).

View Article and Find Full Text PDF

FFA2 and FFA3 are receptors for short-chain fatty acids which are produced in prodigious amounts by fermentation of poorly digested carbohydrates by gut bacteria. Understanding the roles of these receptors in regulating enteroendocrine, metabolic and immune functions has developed with the production and use of novel pharmacological tools and animal models. A complex (patho)physiological scenario is now emerging in which strategic expression of FFA2 and FFA3 in key cell types and selective modulation of their signalling might regulate body weight management, energy homoeostasis and inflammatory disorders.

View Article and Find Full Text PDF