Biochim Biophys Acta Bioenerg
August 2020
An increase in the production of reactive oxygen species (ROS) in mitochondria due to targeted delivery of redox active compounds may be useful in studies of modulation of cell functions by mitochondrial ROS. Recently, the mitochondria-targeted derivative of menadione (MitoK) was synthesized. However, MitoK did not induce mitochondrial ROS production and lipid peroxidation while exerting significant cytotoxic action.
View Article and Find Full Text PDFUnlabelled: Mitochondria are important regulators of tumour growth and progression due to their specific role in cancer metabolism and modulation of apoptotic pathways. In this paper we describe that mitochondria-targeted antioxidant SkQ1 designed as a conjugate of decyl-triphenylphosphonium cation (TPP) with plastoquinone, suppressed the growth of fibrosarcoma HT1080 and rhabdomyosarcoma RD tumour cells in culture and tumour growth of RD in xenograft nude mouse model. Under the same conditions, no detrimental effect of SkQ1 on cell growth of primary human subcutaneous fibroblasts was observed.
View Article and Find Full Text PDFIn the course of cancer progression, epithelial cells often acquire morphological and functional characteristics of mesenchymal cells, a process known as epithelial-to-mesenchymal transition (EMT). EMT provides epithelial cells with migratory, invasive, and stem cell capabilities. Reactive oxygen species produced by mitochondria (mtROS) could be of special importance for pro-tumorigenic signaling and EMT.
View Article and Find Full Text PDFOxidative stress and mitochondrial dysfunction are the key links in the chain of development of pathologies associated with the violation of cellular energy metabolism. Development of mitochondria-addressed compounds highly specific for chemical processes is one of the most promising ways to develop approaches to the treatment of inherited and age-related diseases with mitochondrial etiology. Correlation of structure and chemical activity of the test compounds from a class of lipophilic cations revealed the key role of substituents in the aromatic ring of 1,4-benzoquinones in the manifestation of high antioxidant properties.
View Article and Find Full Text PDFSince the times of the Bible, an extract of black cumin seeds was used as a medicine to treat many human pathologies. Thymoquinone (2-demethylplastoquinone derivative) was identified as an active antioxidant component of this extract. Recently, it was shown that conjugates of plastoquinone and penetrating cations are potent mitochondria-targeted antioxidants effective in treating a large number of age-related pathologies.
View Article and Find Full Text PDFMonoclonal antibodies that could not bind native tetramers of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) but could bind to dimeric, monomeric, or denatured forms of GAPDH were used to investigate its intracellular localization. These antibodies distinctly stained the nucleus in growing HeLa cells. In the cytoplasm, non-native GAPDH was colocalized with actin filaments.
View Article and Find Full Text PDFMalignant cell transformation requires changes in the ability of cells to migrate. The disruption of actin cytoskeleton and intercellular adhesions is an important component of the acquisition of invasive properties in epithelial malignancies. The invasive ability of carcinoma cells is associated with reduced expression of adhesion junction molecules and increased expression of mesenchymal markers, frequently referred to as epithelial-to-mesenchymal transition (EMT).
View Article and Find Full Text PDFNovel mitochondria-targeted compounds composed entirely of natural constituents have been synthesized and tested in model lipid membranes, in isolated mitochondria, and in living human cells in culture. Berberine and palmatine, penetrating cations of plant origin, were conjugated by nonyloxycarbonylmethyl residue with the plant electron carrier and antioxidant plastoquinone. These conjugates (SkQBerb, SkQPalm) and their analogs lacking the plastoquinol moiety (C10Berb and C10Palm) penetrated across planar bilayer phospholipid membrane in their cationic forms and accumulated in isolated mitochondria or in mitochondria in living human cells in culture.
View Article and Find Full Text PDFNovel penetrating cations were used for the design of mitochondria-targeted compounds and tested in model lipid membranes, in isolated mitochondria and in living human cells in culture. Rhodamine-19, berberine and palmatine were conjugated by aliphatic linkers with plastoquinone possessing antioxidant activity. These conjugates (SkQR1,SkQBerb, SkQPalm) and their analogs lacking plastoquinol moiety (C12R1,C10Berb and C10Palm) penetrated bilayer phospholipid membrane in their cationic forms and accumulated in isolated mitochondria or in mitochondria of living cells due to membrane potential negative inside.
View Article and Find Full Text PDFPurpose: To develop effective mitochondria-targeted antioxidants composed entirely of natural constituents.
Methods: Novel mitochondria-targeted antioxidants were synthesized containing plant electron carrier and antioxidant plastoquinone conjugated by nonyloxycarbonylmethyl residue with berberine or palmatine, penetrating cations of plant origin. These compounds, SkQBerb and SkQPalm, were tested in model planar phospholipid membranes and micelles, liposomes, isolated mitochondria and living cells.
The goal of this study was to investigate the possible role of reactive oxygen species (ROS) in signaling, in modulation of the cytoskeleton, and in differentiation of fibroblasts. For this purpose, we have applied a novel mitochondria-targeted antioxidant: plastoquinone conjugated with decyltriphenylphosphonium (SkQ1). This antioxidant at nanomolar concentration prevented ROS accumulation and cell death induced by H(2)O(2) in fibroblasts.
View Article and Find Full Text PDFIt is shown that the novel mitochondria-targeted antioxidant SkQ1, (10-(6'-plastoquinonyl) decyltriphenylphosphonium) stimulates healing of full-thickness dermal wounds in mice and rats. Treatment with nanomolar doses of SkQ1 in various formulations accelerated wound cleaning and suppressed neutrophil infiltration at the early (7 h) steps of inflammatory phase. SkQ1 stimulated formation of granulation tissue and increased the content of myofibroblasts in the beginning of regenerative phase of wound healing.
View Article and Find Full Text PDFProduction of reactive oxygen species (ROS) in mitochondria was studied using the novel mitochondria-targeted antioxidants (SkQ) in cultures of human cells. It was shown that SkQ rapidly (1-2 h) and selectively accumulated in mitochondria and prevented oxidation of mitochondrial components under oxidative stress induced by hydrogen peroxide. At nanomolar concentrations, SkQ inhibited oxidation of glutathione, fragmentation of mitochondria, and translocation of Bax from cytosol into mitochondria.
View Article and Find Full Text PDFIt was proposed that increased level of mitochondrial reactive oxygen species (ROS), mediating execution of the aging program of an organism, could also be critical for neoplastic transformation and tumorigenesis. This proposal was addressed using new mitochondria-targeted antioxidant SkQ1 (10-(6'-plastoquinonyl) decyltriphenylphosphonium) that scavenges ROS in mitochondria at nanomolar concentrations. We found that diet supplementation with SkQ1 (5 nmol/kg per day) suppressed spontaneous development of tumors (predominantly lymphomas) in p53(-/-) mice.
View Article and Find Full Text PDFSynthesis of cationic plastoquinone derivatives (SkQs) containing positively charged phosphonium or rhodamine moieties connected to plastoquinone by decane or pentane linkers is described. It is shown that SkQs (i) easily penetrate through planar, mitochondrial, and outer cell membranes, (ii) at low (nanomolar) concentrations, posses strong antioxidant activity in aqueous solution, BLM, lipid micelles, liposomes, isolated mitochondria, and cells, (iii) at higher (micromolar) concentrations, show pronounced prooxidant activity, the "window" between anti- and prooxidant concentrations being very much larger than for MitoQ, a cationic ubiquinone derivative showing very much lower antioxidant activity and higher prooxidant activity, (iv) are reduced by the respiratory chain to SkQH2, the rate of oxidation of SkQH2 being lower than the rate of SkQ reduction, and (v) prevent oxidation of mitochondrial cardiolipin by OH*. In HeLa cells and human fibroblasts, SkQs operate as powerful inhibitors of the ROS-induced apoptosis and necrosis.
View Article and Find Full Text PDFTRAIL (Apo2L), a cytokine from the family of tumor necrosis factors (TNF), causes apoptosis in various types of tumor cells but is not toxic for normal cells. Recombinant TRAIL obtained using an original method stimulates the release of cytochrome c from mitochondria into the cytoplasm and apoptosis in HeLa carcinoma cells. Expression of oncoprotein Bcl-2 in these cells blocks both processes.
View Article and Find Full Text PDFBiochim Biophys Acta
September 2006
Fission of the mitochondrial reticulum (the thread-grain transition) and following gathering of mitochondria in the perinuclear area are induced by oxidative stress. It is shown that inhibitors of the respiratory chain (piericidin and myxothiazol) cause fission of mitochondria in HeLa cells and fibroblasts, whereas a mitochondria-targeted antioxidant (MitoQ) inhibits this effect. Hydrogen peroxide also induced the fission, which was stimulated by the inhibitors of respiration and suppressed by MitoQ.
View Article and Find Full Text PDFIn monolayer of HeLa cells treated with tumor necrosis factor (TNF), apoptotic cells formed clusters indicating possible transmission of apoptotic signal via the culture media. To investigate this phenomenon, a simple method of enabling two cell cultures to interact has been employed. Two coverslips were placed side by side in a Petri dish, one coverslip covered with apoptogen-treated cells (the inducer) and another with non-treated cells (the recipient).
View Article and Find Full Text PDFDynamics of alterations of cell surface topography during TNF-induced apoptosis of HeLa cells was examined by phase-contrast videomicroscopy and immunomorphological analysis. The final stage of apoptosis accompanied by cell rounding and general blebbing of the cell surface became after 4-6 h of incubation but much earlier, after 1.5-3 h, essentially flattened lamellipodia at the active edges transformed into the small blebs that were continuously extended and retracted during the next 1-2 h.
View Article and Find Full Text PDFAssociation of mitochondrial population to a mitochondrial reticulum is typical of many types of the healthy cells. This allows the cell to organize a united intracellular power-transmitting system. However, such an association can create some difficulties for the cell when a part of the reticulum is damaged or when mitochondria should migrate from one cell region to another.
View Article and Find Full Text PDFGlyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a protein with various activities far from its enzymatic function. Here, we showed that the oxidation of SH-groups of the active site of GAPDH enhanced its binding with total transfer RNA or with total DNA. Both NAD and NADH-the cofactors of GAPDH-inhibited the GAPDH-RNA (DNA) interaction, though NAD was much less effective than NADH in the case of oxidized GAPDH.
View Article and Find Full Text PDFChanges in cytoskeletal structures have been investigated during apoptosis of epithelial HeLa cells induced by tumor necrosis factor-alpha (TNF-alpha). Shape and surface cell activity were investigated by time-lapse video microscopy, and changes of the cytoskeletal structure were studied by immune fluorescent microscopy. Addition of TNF-alpha to HeLa cell culture caused early disruption of the actin cytoskeleton and vinculin-containing focal contacts, keratin filaments, and microtubules.
View Article and Find Full Text PDFThe behaviour of epitheliocytes, their transformed analogues, and fibroblasts was studied on special culture substrates--lattices with large square openings (the area of an opening was 2000 microm2). It was shown that normal epithelocytes and fibroblasts initially attached to and spread on the lattice bars, were soon displaced into the lattice openings and appeared to be "sagged" in the substrate-free spaces. The cells remained attached to the bars only by their edges (epitheliocytes) or lateral processes (fibroblasts), whereas basal surfaces of the cells had no contacts with the substrate.
View Article and Find Full Text PDFThe aim of this work was to study role of the contractility in the process of fibroblast spreading. We investigated the morphology and cytoskeleton of cells seeded in the medium containing 2,3 butanedione monoxime (BDM), an inhibitor of myosin II and myosin-ATPase. Time-lapse video observation and immunofluorescence microscopy were used.
View Article and Find Full Text PDF