Microplastics up to 20 μm are recognized as having the highest potential to cause significant impacts on aquatic environments. Current methods face challenges in detecting and chemically characterizing small microplastics in freshwater systems. In this study, using an optical confocal micro-Raman tweezer technique, the composition of particles trapped in lake aggregates collected from surface water around Yangcheng Lake in Suzhou, China, has been identified.
View Article and Find Full Text PDFThe feature issue of Biomedical Optics Express presents studies that were the focus of the Optical Manipulation and its Applications (OMA) meeting that was held on 24 - 27 April 2022 in Vancouver, Canada.
View Article and Find Full Text PDFBiomed Opt Express
September 2023
Strategies for in-liquid micro-organism detection are crucial for the clinical and pharmaceutical industries. While Raman spectroscopy is a promising label-free technique for micro-organism detection, it remains challenging due to the weak bacterial Raman signals. In this work, we exploit the unique electromagnetic properties of metamaterials to identify bacterial components in liquid using an array of Fano-resonant metamolecules.
View Article and Find Full Text PDFThe pursuit for efficient nanoparticle trapping with low powers has led to optical tweezers technology moving from the conventional free-space configuration to advanced plasmonic systems. However, trapping nanoparticles smaller than 10 nm still remains a challenge even for plasmonic tweezers. Proper nanocavity design and excitation has given rise to the self-induced back-action (SIBA) effect offering enhanced trap stiffness with decreased laser power.
View Article and Find Full Text PDFPlasmonic optical tweezers that stem from the need to trap and manipulate ever smaller particles using non-invasive optical forces, have made significant contributions to precise particle motion control at the nanoscale. In addition to the optical forces, other effects have been explored for particle manipulation. For instance, the plasmonic heat delivery mechanism generates micro- and nanoscale optothermal hydrodynamic effects, such as natural fluid convection, Marangoni fluid convection and thermophoretic effects that influence the motion of a wide range of particles from dielectric to biomolecules.
View Article and Find Full Text PDFMarine plastic debris is widely recognized as a global environmental issue. Small microplastic particles, with an upper size limit of 20 μm, have been identified as having the highest potential for causing damage to marine ecosystems. Having accurate methods for quantifying the abundance of such particles in a natural environment is essential for defining the extent of the problem they pose.
View Article and Find Full Text PDFThe manipulation of microparticles using optical forces has led to many applications in the life and physical sciences. To extend optical trapping towards the nano-regime, in this work we demonstrate trapping of single nanoparticles in arrays of plasmonic coaxial nano-apertures with various inner disk sizes and theoretically estimate the associated forces. A high normalized experimental trap stiffness of 3.
View Article and Find Full Text PDFPlasmonic nanostructures overcome Abbe's diffraction limit to create strong gradient electric fields, enabling efficient optical trapping of nanoparticles. However, it remains challenging to achieve stable trapping with low incident laser intensity. Here, we demonstrate Fano resonance-assisted plasmonic optical tweezers for single nanoparticle trapping in an array of asymmetrical split nanoapertures on a 50 nm gold thin film.
View Article and Find Full Text PDF