Publications by authors named "Dominique Weil"

Article Synopsis
  • Understanding RNA targeting to membraneless organelles like P-bodies (PBs) is crucial for revealing their functions in cells.
  • This study shows that PBs in HEK293 cells undergo significant changes in RNA content throughout the cell cycle, with different mRNA localization patterns appearing at various stages (G1, S, G2).
  • The findings suggest that PBs actively sort mRNAs based on their translation status and characteristics, implying that they play a more dynamic role than merely housing excess untranslated mRNAs.
View Article and Find Full Text PDF

The localization of RNAs in cells is critical for many cellular processes. Whereas motor-driven transport of ribonucleoprotein (RNP) condensates plays a prominent role in RNA localization in cells, their study remains limited by the scarcity of available tools allowing to manipulate condensates in a spatial manner. To fill this gap, we reconstitute in cellula a minimal RNP transport system based on bioengineered condensates, which were functionalized with kinesins and dynein-like motors, allowing for their positioning at either the cell periphery or centrosomes.

View Article and Find Full Text PDF

Amino acids evolve at different speeds within protein sequences, because their functional and structural roles are different. Notably, amino acids located at the surface of proteins are known to evolve more rapidly than those in the core. In particular, amino acids at the N- and C-termini of protein sequences are likely to be more exposed than those at the core of the folded protein due to their location in the peptidic chain, and they are known to be less structured.

View Article and Find Full Text PDF

Although it is now recognized that specific RNAs and protein families are critical for the biogenesis of ribonucleoprotein (RNP) condensates, how these molecular constituents determine condensate size and morphology is unknown. To circumvent the biochemical complexity of endogenous RNP condensates, the use of programmable tools to reconstitute condensate formation with minimal constituents can be instrumental. Here we report a methodology to form RNA-containing condensates in living cells programmed to specifically recruit a single RNA species.

View Article and Find Full Text PDF

Human inborn errors of IFN-γ underlie mycobacterial disease, due to insufficient IFN-γ production by lymphoid cells, impaired myeloid cell responses to this cytokine, or both. We report four patients from two unrelated kindreds with intermittent monocytosis and mycobacterial disease, including bacillus Calmette-Guérin-osis and disseminated tuberculosis, and without any known inborn error of IFN-γ. The patients are homozygous for variants (p.

View Article and Find Full Text PDF

Intellectual disability (ID) affects at least 1% of the population, and typically presents in the first few years of life. ID is characterized by impairments in cognition and adaptive behavior and is often accompanied by further delays in language and motor skills, as seen in many neurodevelopmental disorders (NDD). Recent widespread high-throughput approaches that utilize whole-exome sequencing or whole-genome sequencing have allowed for a considerable increase in the identification of these pathogenic variants in monogenic forms of ID.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores the relationship between mRNA translation and decay, revealing that this interplay is not fully understood.
  • By analyzing various transcriptomes, it was found that mRNA content (specifically GC vs. AU richness) significantly influences mRNA localization, translation efficiency, and stability.
  • The findings indicate that AU-rich mRNAs are less efficiently translated and follow different decay pathways compared to GC-rich mRNAs, highlighting a complex system of post-transcriptional regulation in human cells.
View Article and Find Full Text PDF
Article Synopsis
  • * The variants disrupt DDX6's function in processing bodies, which are critical for mRNA regulation, leading to defective assembly and interactions with protein partners in cell lines.
  • * Findings suggest that DDX6 could be linked to a neurodevelopmental syndrome and should be included in the growing category of disorders associated with RNA helicases, alongside DDX3X and DHX30.
View Article and Find Full Text PDF

Liquid-liquid phase separation is thought to be a key organizing principle in eukaryotic cells to generate highly concentrated dynamic assemblies, such as the RNP granules. Numerous in vitro approaches have validated this model, yet a missing aspect is to take into consideration the complex molecular mixture and promiscuous interactions found in vivo. Here we report the versatile scaffold ArtiG to generate concentration-dependent RNA-protein condensates within living cells, as a bottom-up approach to study the impact of co-segregated endogenous components on phase separation.

View Article and Find Full Text PDF

Post-transcriptional regulation of gene expression is largely achieved at the level of splicing in the nucleus, and translation and mRNA decay in the cytosol. While the regulation may be global, through the direct inhibition of central factors, such as the spliceosome, translation initiation factors and mRNA decay enzymes, in many instances transcripts bearing specific sequences or particular features are regulated by RNA-binding factors which mobilize or impede recruitment of these machineries. This review focuses on the Pat1 family of RNA-binding proteins, conserved from yeast to man, that enhance the removal of the 5' cap by the decapping enzyme Dcp1/2, leading to mRNA decay and also have roles in translational repression.

View Article and Find Full Text PDF

In this issue of Molecular Cell, using leading-edge technologies, Metkar et al. (2018) and Adivarahan et al. (2018) revisit the spatial organization of mRNPs, showing that they form flexible rod-like structures prior to translation that decompact during translation while the closed-loop conformation is rarely observed.

View Article and Find Full Text PDF

Tauopathies, such as Alzheimer's disease, are characterized by intracellular aggregates of insoluble Tau proteins. Originally described as a microtubule binding protein, recent studies demonstrated additional physiological roles for Tau. The fact that a single protein can regulate multiple cellular functions has posed challenge in terms of understanding mechanistic cues behind the pathology.

View Article and Find Full Text PDF

P-bodies (PBs) are cytosolic RNP granules that are conserved among eukaryotic organisms. In the past few years, major progress has been made in understanding the biochemical and biophysical mechanisms that lead to their formation. However, whether they play a role in mRNA storage or decay remains actively debated.

View Article and Find Full Text PDF

Within cells, soluble RNPs can switch states to coassemble and condense into liquid or solid bodies. Although these phase transitions have been reconstituted in vitro, for endogenous bodies the diversity of the components, the specificity of the interaction networks, and the function of the coassemblies remain to be characterized. Here, by developing a fluorescence-activated particle sorting (FAPS) method to purify cytosolic processing bodies (P-bodies) from human epithelial cells, we identified hundreds of proteins and thousands of mRNAs that structure a dense network of interactions, separating P-body from non-P-body RNPs.

View Article and Find Full Text PDF

Pat1 RNA-binding proteins, enriched in processing bodies (P bodies), are key players in cytoplasmic 5' to 3' mRNA decay, activating decapping of mRNA in complex with the Lsm1-7 heptamer. Using co-immunoprecipitation and immunofluorescence approaches coupled with RNAi, we provide evidence for a nuclear complex of Pat1b with the Lsm2-8 heptamer, which binds to the spliceosomal U6 small nuclear RNA (snRNA). Furthermore, we establish the set of interactions connecting Pat1b/Lsm2-8/U6 snRNA/SART3 and additional U4/U6.

View Article and Find Full Text PDF

We report here a case of a rarely described complication of laparoscopic adjustable gastric banding (LAGB), slippage during the postpartum period, after LAGB had been performed in an adolescent obese girl. The LAGB had been placed after one year of clinical survey initiated at the age of 16. Maximal pre-operative body mass index (BMI) was 48.

View Article and Find Full Text PDF

4E-Transporter binds eIF4E via its consensus sequence YXXXXLΦ, shared with eIF4G, and is a nucleocytoplasmic shuttling protein found enriched in P-(rocessing) bodies. 4E-T inhibits general protein synthesis by reducing available eIF4E levels. Recently, we showed that 4E-T bound to mRNA however represses its translation in an eIF4E-independent manner, and contributes to silencing of mRNAs targeted by miRNAs.

View Article and Find Full Text PDF

Background/purpose: Obesity now affects 3%-4% of the pediatric population and contributes to the increase in cardiac mortality in adulthood. Bariatric surgery is the best treatment for weight loss and the obesity-associated comorbidities in adults. We report here our experience of laparoscopic adjustable gastric banding (LAGB) in adolescents.

View Article and Find Full Text PDF

Runs of homozygosity (ROHs) are extended genomic regions of homozygous genotypes that record populations' mating patterns in the past. We performed microarray genotyping on 15 individuals from a small isolated Tunisian community. We estimated the individual and population genome-wide level of homozygosity from data on ROH above 0.

View Article and Find Full Text PDF

In order to gain insights on the nuclear organization in mammalian cells, we characterized ultrastructurally nuclear bodies (NBs) previously described as fluorescent foci. Using high resolution immunoelectron microscopy (I-EM), we provide evidence that CNoBs (CRM1-Nucleolar bodies) and INBs (Intranucleolar bodies) are distinct genuine nucleolar structures in untreated HeLa cells. INBs are fibrillar and concentrate the post-translational modifiers SUMO1 and SUMO-2/3 as strongly as PML bodies.

View Article and Find Full Text PDF

The genetic heterogeneity of congenital hearing disorders makes molecular diagnosis expensive and time-consuming using conventional techniques such as Sanger sequencing of DNA. In order to design an appropriate strategy of molecular diagnosis in the Algerian population, we explored the diversity of the involved mutations by studying 65 families affected by autosomal recessive forms of nonsyndromic hearing impairment (DFNB forms), which are the most prevalent early onset forms. We first carried out a systematic screening for mutations in GJB2 and the recurrent p.

View Article and Find Full Text PDF

P-bodies are cytoplasmic ribonucleoprotein granules involved in posttranscriptional regulation. DDX6 is a key component of their assembly in human cells. This DEAD-box RNA helicase is known to be associated with various complexes, including the decapping complex, the CPEB repression complex, RISC, and the CCR4/NOT complex.

View Article and Find Full Text PDF

Background: The aim of the present national prospective population-based study was to assess the early morbidity of esophageal atresia (EA).

Methods: All 38 multidisciplinary French centers that care for patients with EA returned a specific questionnaire about the 1-year outcome for each patient. This information was centralized, checked, and entered into a database.

View Article and Find Full Text PDF

Background: An increase in cryptorchidism has been reported in many countries. One mechanism could be low fetal testosterone production possibly secondary to altered placental human chorionic gonadotrophin (hCG) release. Our Objective was to compare hCG values from maternal blood between boys with cryptorchidism and normal boys.

View Article and Find Full Text PDF