A new series of lactam-derived EZH2 inhibitors was designed via ligand-based and physicochemical-property-based strategies to address metabolic stability and thermodynamic solubility issues associated with previous lead compound 1. The new inhibitors incorporated an sp hybridized carbon atom at the 7-position of the lactam moiety present in lead compound 1 as a replacement for a dimethylisoxazole group. This transformation enabled optimization of the physicochemical properties and potency compared to compound 1.
View Article and Find Full Text PDFA new enhancer of zeste homolog 2 (EZH2) inhibitor series comprising a substituted phenyl ring joined to a dimethylpyridone moiety via an amide linkage has been designed. A preferential amide torsion that improved the binding properties of the compounds was identified for this series via computational analysis. Cyclization of the amide linker resulted in a six-membered lactam analogue, compound 18.
View Article and Find Full Text PDFThe SWI/SNF multisubunit complex modulates chromatin structure through the activity of two mutually exclusive catalytic subunits, SMARCA2 and SMARCA4, which both contain a bromodomain and an ATPase domain. Using RNAi, cancer-specific vulnerabilities have been identified in SWI/SNF-mutant tumors, including SMARCA4-deficient lung cancer; however, the contribution of conserved, druggable protein domains to this anticancer phenotype is unknown. Here, we functionally deconstruct the SMARCA2/4 paralog dependence of cancer cells using bioinformatics, genetic, and pharmacologic tools.
View Article and Find Full Text PDFIn addition to genetic alterations, cancer cells are characterized by myriad epigenetic changes. EZH2 is a histone methyltransferase that is over-expressed and mutated in cancer. The EZH2 gain-of-function (GOF) mutations first identified in lymphomas have recently been reported in melanoma (~2%) but remain uncharacterized.
View Article and Find Full Text PDFLenalidomide and pomalidomide have both been evaluated clinically for their properties as anticancer agents, with lenalidomide being available commercially. We previously reported that both compounds cause cell cycle arrest in Burkitt's lymphoma and multiple myeloma cell lines by increasing the level of p21(WAF-1) expression. In the present study, we unravel the molecular mechanism responsible for p21(WAF-1) up-regulation using Namalwa cells as a human lymphoma model.
View Article and Find Full Text PDFSickle-cell disease (SCD) and beta thalassemia constitute worldwide public health problems. New therapies, including hydroxyurea, have attempted to augment the synthesis of fetal hemoglobin (HbF) and improve current treatment. Lenalidomide and pomalidomide are members of a class of immunomodulators used as anticancer agents.
View Article and Find Full Text PDFThe molecular mechanisms that control the proliferation and differentiation of specific cell types remain poorly understood. Positive ETS factors play important roles in mediating proliferative responses to Ras/MAPK signaling in many cell types following mitogenic stimulation. PE-1/METS, a member of the ETS-domain family transcription factors that functions as a transcriptional repressor, can block mitogenic responses mediated by positively acting Ets factors.
View Article and Find Full Text PDFCOX2 (prostaglandin G/H synthase, PTGS2) is a well-validated target in the fields of both oncology and inflammation. Despite their significant toxicity profile, non-steroidal anti-inflammatory drugs (NSAIDs) have become standard of care in the treatment of many COX2-mediated inflammatory conditions. In this report, we show that one IMiDs((R)) immunomodulatory drug, CC-4047, can reduce the levels of COX2 and the production of prostaglandins (PG) in human LPS-stimulated monocytes.
View Article and Find Full Text PDFClinical studies involving patients with myelodysplastic syndromes or multiple myeloma have shown the efficacy of lenalidomide by reducing and often eliminating malignant cells while restoring the bone marrow function. To better understand these clinical observations, we investigated and compared the effects of lenalidomide and a structurally related analogue, CC-4047, on the proliferation of two different human hematopoietic cell models: the Namalwa cancer cell line and normal CD34+ progenitor cells. Both compounds had antiproliferative effects on Namalwa cells and pro-proliferative effects on CD34+ cells, whereas p21WAF-1 expression was up-regulated in both cell types.
View Article and Find Full Text PDF