Publications by authors named "Dominique This"

Coconut (Cocos nucifera) is the emblematic palm of tropical coastal areas all around the globe. It provides vital resources to millions of farmers. In an effort to better understand its evolutionary history and to develop genomic tools for its improvement, a sequence draft was recently released.

View Article and Find Full Text PDF

The palms are a family of tropical origin and one of the main constituents of the ecosystems of these regions around the world. The two main species of palm represent different challenges: coconut (Cocos nucifera L.) is a source of multiple goods and services in tropical communities, while oil palm (Elaeis guineensis Jacq) is the main protagonist of the oil market.

View Article and Find Full Text PDF

In this research, we cloned and accessed nucleotide diversity in the common bean ERECTA gene which has been implicated in drought tolerance and stomatal patterning. The homologous gene segment was isolated with degenerate primer and was found to be located on Chromosome 1. The gene had at least one paralog on Chromosome 9 and duplicate copies in soybean for each homolog.

View Article and Find Full Text PDF

Chickpea is an important food legume crop for the semi-arid regions, however, its productivity is adversely affected by various biotic and abiotic stresses. Identification of candidate genes associated with abiotic stress response will help breeding efforts aiming to enhance its productivity. With this objective, 10 abiotic stress responsive candidate genes were selected on the basis of prior knowledge of this complex trait.

View Article and Find Full Text PDF
Article Synopsis
  • Bananas are a crucial fruit for many developing countries, and the recently released genome sequence of Musa acuminata aids in understanding monocot evolution.
  • The study has been supported by various tools, including a Community Annotation System and resources for phylogenomics and metabolic pathways.
  • The Banana Genome Hub facilitates data integration and interoperability, allowing researchers to analyze gene families and access diverse Musa-related data efficiently.
View Article and Find Full Text PDF

Background: The abscisic acid (ABA) pathway plays an important role in the plants' reaction to drought stress and ABA-stress response (Asr) genes are important in controlling this process. In this sense, we accessed nucleotide diversity at two candidate genes for drought tolerance (Asr1 and Asr2), involved in an ABA signaling pathway, in the reference collection of cultivated common bean (Phaseolus vulgaris L.) and a core collection of wild common bean accessions.

View Article and Find Full Text PDF

Common beans are an important food legume faced with a series of abiotic stresses the most severe of which is drought. The crop is interesting as a model for the analysis of gene phylogenies due to its domestication process, race structure, and origins in a group of wild common beans found along the South American Andes and the region of Mesoamerica. Meanwhile, the DREB2 transcription factors have been implicated in controlling non-ABA dependent responses to drought stress.

View Article and Find Full Text PDF

Asr (ABA, stress, ripening) genes represent a small gene family potentially involved in drought tolerance in several plant species. To analyze their interest for rice breeding for water-limited environments, this gene family was characterized further. Genomic organization of the gene family reveals six members located on four different chromosomes and with the same exon-intron structure.

View Article and Find Full Text PDF

Increasing the water use efficiency (WUE) of our major crop species is an important target of agricultural research. Rice is a major water consumer in agriculture and it is also an attractive genetic model. We evaluated leaf-level WUE in young rice seedlings using carbon isotope discrimination (Delta(13)C) as an indicator of the trait.

View Article and Find Full Text PDF

Studies of phenotype of knockout mutants can provide new insights into physiological, phenological and architectural feedbacks in the plant system. Phyllo, a mutant of Nippon Bare rice (Oryza sativa L.) producing small leaves in rapid succession, was isolated during multiplication of a T-DNA insertion library.

View Article and Find Full Text PDF

Drought limits cereal yields in several regions of the world and plant water status plays an important role in tolerance to drought. To investigate and understand the genetic and physiological basis of drought tolerance in barley, differentially expressed sequence tags (dESTs) and candidate genes for the drought response were mapped in a population of 167 F8 recombinant inbred lines derived from a cross between "Tadmor" (drought tolerant) and "Er/Apm" (adapted only to specific dry environments). One hundred sequenced probes from two cDNA libraries previously constructed from drought-stressed barley (Hordeum vulgare L.

View Article and Find Full Text PDF