Publications by authors named "Dominique Thiaudiere"

In the energy production and transportation industries, numerous metallic structures may be subjected to at least several billions of cycles, i.e. loaded in the very high cycle fatigue domain (VHCF).

View Article and Find Full Text PDF

The microstructure and texture of the intermetallics in Al/Mg/Al multi-layer composite fabricated by Accumulative Roll Bonding (ARB) at 400 °C up to 6 cycles were investigated using Electron BackScatter Diffraction (EBSD) and Synchrotron X-ray Diffraction (SXRD). EBSD and SXRD analysis have shown that ARB processing leads to the formation of AlMg and MgAl intermetallics soon after the second ARB cycle with a global thickness of 12 (N = 2) to 22 µm (N = 6). The polycrystalline intermetallics plates growth was columnar and normal to the bonding interface.

View Article and Find Full Text PDF

One of the challenges of all synchrotron facilities is to offer the highest performance detectors for all their specific experiments, in particular for X-ray diffraction imaging and its high throughput data collection. In that context, the DiffAbs beamline, the Detectors and the Design and Engineering groups at Synchrotron SOLEIL, in collaboration with ImXPAD and Cegitek companies, have developed an original and unique detector with a circular shape. This detector is based on the hybrid pixel photon-counting technology and consists of the specific assembly of 20 hybrid pixel array detector (XPAD) modules.

View Article and Find Full Text PDF

Ni and Ni(W) solid solution of bulk Ni and Ni-W alloys (Ni-10W, Ni-30W, and Ni-50W) (wt%) were mechanically compared through the evolution of their {111} X-ray diffraction peaks during in situ tensile tests on the DiffAbs beamline at the Synchrotron SOLEIL. A significant difference in terms of strain heterogeneities and lattice strain evolution occurred as the plastic activity increased. Such differences are attributed to the number of brittle W clusters and the hardening due to the solid solution compared to the single-phase bulk Ni sample.

View Article and Find Full Text PDF

Fossils, including those that occasionally preserve decay-prone soft tissues, are mostly made of minerals. Accessing their chemical composition provides unique insight into their past biology and/or the mechanisms by which they preserve, leading to a series of developments in chemical and elemental imaging. However, the mineral composition of fossils, particularly where soft tissues are preserved, is often only inferred indirectly from elemental data, while X-ray diffraction that specifically provides phase identification received little attention.

View Article and Find Full Text PDF

We describe the impact of tensile strains on the structural properties of thin films composed of PffBT4T-2OD π-conjugated polymer and PCBM fullerenes coated on a stretchable substrate, based on a novel approach using in situ studies of flexible organic thin films. In situ grazing incidence X-ray diffraction (GIXD) measurements were carried out to probe the ordering of polymers and to measure the strain of the polymer chains under uniaxial tensile tests. A maximum 10% tensile stretching was applied (i.

View Article and Find Full Text PDF

Quasi phase-pure (>98 wt %) MAX phase solid solution ceramics with the (Zr,Ti)(Al,Sn)C stoichiometry and variable Zr/Ti ratios were synthesized by both reactive hot pressing and pressureless sintering of ZrH, TiH, Al, Sn, and C powder mixtures. The influence of the different processing parameters, such as applied pressure and sintering atmosphere, on phase purity and microstructure of the produced ceramics was investigated. The addition of Sn to the (Zr,Ti)AlC system was the key to achieve phase purity.

View Article and Find Full Text PDF

This paper describes a method for rapid measurements of the specular X-ray reflectivity signal using an area detector and a monochromatic, well collimated X-ray beam (divergence below 0.01°), combined with a continuous data acquisition mode during the angular movements of the sample and detector. In addition to the total integrated (and background-corrected) reflectivity signal, this approach yields a three-dimensional mapping of the reciprocal space in the vicinity of its origin.

View Article and Find Full Text PDF

The new rapid scan method, Flyscan mode, implemented on the DiffAbs beamline at Synchrotron SOLEIL, allows fast micro-X-ray fluorescence data acquisition. It paves the way for applications in the biomedical field where a large amount of data is needed to generate meaningful information for the clinician. This study presents a complete set of data acquired after injection of gold-cluster-enriched mesoporous silica nanospheres, used as potential theranostic vectors, into rats.

View Article and Find Full Text PDF

Food-grade titanium dioxide (TiO) containing a nanoscale particle fraction (TiO-NPs) is approved as a white pigment (E171 in Europe) in common foodstuffs, including confectionary. There are growing concerns that daily oral TiO-NP intake is associated with an increased risk of chronic intestinal inflammation and carcinogenesis. In rats orally exposed for one week to E171 at human relevant levels, titanium was detected in the immune cells of Peyer's patches (PP) as observed with the TiO-NP model NM-105.

View Article and Find Full Text PDF

Ion-surface interactions are of high practical importance in a wide range of technological, environmental and biological problems. In particular, they ultimately control the electric double layer structure, hence the interaction between particles in aqueous solutions. Despite numerous achievements, progress in their understanding is still limited by the lack of experimental determination of the surface composition with appropriate resolution.

View Article and Find Full Text PDF

Strain-induced crystallization (SIC) of natural rubber (NR) is studied during dynamic cycles at high frequencies (with equivalent strain rates ranging from 7.2 s(-1) to 290 s(-1)). The testing parameters are varied: the frequency, the temperature and the stretching ratio domain.

View Article and Find Full Text PDF

The interpretation of flattened fossils remains a major challenge due to compression of their complex anatomies during fossilization, making critical anatomical features invisible or hardly discernible. Key features are often hidden under greatly preserved decay prone tissues, or an unpreparable sedimentary matrix. A method offering access to such anatomical features is of paramount interest to resolve taxonomic affinities and to study fossils after a least possible invasive preparation.

View Article and Find Full Text PDF

Osteoporosis represents a major public health problem through its association with fragility fractures. The public health burden of osteoporotic fractures will rise in future generations, due in part to an increase in life expectancy. Strontium-based drugs have been shown to increase bone mass in postmenopausal osteoporosis patients and to reduce fracture risk but the molecular mechanisms of the action of these Sr-based drugs are not totally elucidated.

View Article and Find Full Text PDF

We aimed to examine the presence of Zn, a trace element, in osteoarthritis (OA) cartilage and meniscus from patients undergoing total knee joint replacement for primary OA. We mapped Ca(2+) and Zn(2+) at the mesoscopic scale by X-ray fluorescence microanalysis (μX-ray) to determine the spatial distribution of the 2 elements in cartilage, μX-ray absorption near edge structure spectroscopy to identify the Zn species, and μX-ray diffraction to determine the chemical nature of the calcification. Fourier transform infrared spectroscopy was used to determine the chemical composition of cartilage and meniscus.

View Article and Find Full Text PDF

Natural rubber exhibits remarkable mechanical fatigue properties usually attributed to strain-induced crystallization. To investigate this phenomenon, an original experimental set-up that couples synchrotron radiation with a homemade fatigue machine has been developed. Diffraction-pattern recording is synchronized with cyclic loading in order to obtain spatial distributions of crystallinity in the sample at prescribed times of the mechanical cycles.

View Article and Find Full Text PDF

Surface-dependent precipitation: The adsorption of Ni(II) complexes in aqueous solution on (0001) and (1102) α-Al(2)O(3) single-crystal surfaces has been studied (see the X-ray absorption spectra obtained for parallel and perpendicular polarization directions). The use of planar model systems emphasizes the crucial role of the Al(2)O(3) orientation for Ni dispersion with practical implications in catalyst preparation procedures.

View Article and Find Full Text PDF

An in situ tensile-shear loading device has been designed to study elastomer crystallization using synchrotron X-ray scattering at the Synchrotron Soleil on the DiffAbs beamline. Elastomer tape specimens of thickness 2 mm can be elongated by up to 500% in the longitudinal direction and sheared by up to 200% in the transverse direction. The device is fully automated and plugged into the TANGO control system of the beamline allowing synchronization between acquisition and loading sequences.

View Article and Find Full Text PDF

The structure of AF-ZrF(4) system (A(+) = Li(+), Na(+), K(+)) compounds in the liquid state is studied using an approach combining EXAFS spectroscopy with molecular dynamics simulations. A very good agreement is observed between the two techniques, which allows us to propose a quantitative description of the liquids. From the Zr(4+) solvation shell point of view, we observe a progressive stabilization of the 7-fold and then of the 6-fold coordinated complexes when passing from Li(+) to Na(+) and K(+) as a "counterion".

View Article and Find Full Text PDF

Calcium (Ca(2+))-containing crystals (CCs), including basic Ca(2+) phosphate (BCP) and Ca(2+) pyrophosphate dihydrate (CPPD) crystals, are associated with severe forms of osteoarthritis (OA). Growing evidence supports a role for abnormal articular cartilage mineralization in the pathogenesis of OA. However, the role of Ca(2+) compounds in this mineralization process remains poorly understood.

View Article and Find Full Text PDF

At the surface of attached kidney stones, a particular deposit termed Randall's plaque (RP) serves as a nucleus. This structural particularity as well as other major public health problems such as diabetes type-2 may explain the dramatic increase in urolithiasis now affecting up to 20% of the population in the industrialized countries. Regarding the chemical composition, even if other phosphate phases such as whitlockite or brushite can be found as minor components (less than 5%), calcium phosphate apatite as well as amorphous carbonated calcium phosphate (ACCP) are the major components of most RPs.

View Article and Find Full Text PDF

The role of oligo-elements such as Zn in the genesis of pathological calcifications is widely debated in the literature. An essential element of discussion is given by their localisation either at the surface or within the Ca apatite crystalline network. To determine the localisation, X-ray absorption experiments have been performed at SOLEIL.

View Article and Find Full Text PDF

This very first report of an X-ray absorption spectroscopy experiment at Synchrotron SOLEIL is part of a long-term study dedicated to pathological calcifications. Such biological entities composed of various inorganic and/or organic compounds also contain trace elements. In the case of urinary calculi, different papers already published have pointed out that these oligo-elements may promote or inhibit crystal nucleation as well as growth of mineral.

View Article and Find Full Text PDF