In S phase, duplicating and assembling the whole genome into chromatin requires upregulation of replicative histone gene expression. Here, we explored how histone chaperones control histone production in human cells to ensure a proper link with chromatin assembly. Depletion of the ASF1 chaperone specifically decreases the pool of replicative histones both at the protein and RNA levels.
View Article and Find Full Text PDFHistone chaperones are key regulators of chromatin structure and function. Their frequent mis-regulation in various cancers can impact tumor initiation and progression. Here, we focus on H3-H4 histone chaperones to highlight recent studies concerning their roles in several cancers thereby expanding on previous reports illustrating their functions as tumor-promoting and/or as useful biomarkers for clinical applications.
View Article and Find Full Text PDFWithin the cell nucleus, the organization of the eukaryotic DNA into chromatin uses histones as components of its building block, the nucleosome. This chromatin organization contributes to the regulation of all DNA template-based reactions impacting genome function, stability, and plasticity. Histones and their variants endow chromatin with unique properties and show a distinct distribution into the genome that is regulated by dedicated deposition machineries.
View Article and Find Full Text PDFThe synthesis of poly(ADP-ribose) (PAR) reconfigures the local chromatin environment and recruits DNA-repair complexes to damaged chromatin. PAR degradation by poly(ADP-ribose) glycohydrolase (PARG) is essential for progression and completion of DNA repair. Here, we show that inhibition of PARG disrupts homology-directed repair (HDR) mechanisms that underpin alternative lengthening of telomeres (ALT).
View Article and Find Full Text PDFNucleosomes represent a challenge in regard to transcription. Histone eviction enables RNA polymerase II (RNAPII) progression through DNA, but compromises chromatin integrity. Here, we used the SNAP-tag system to distinguish new and old histones and monitor chromatin reassembly coupled to transcription in human cells.
View Article and Find Full Text PDFThe HIRA histone chaperone complex deposits the histone variant H3.3 onto chromatin in a DNA synthesis-independent manner. It comprises three identified subunits, HIRA, UBN1 and CABIN1, however the functional oligomerization state of the complex has not been investigated.
View Article and Find Full Text PDFDistinct histone variants mark chromatin domains in the nucleus. To understand how these marks are established and maintained, one has to decipher how the dynamic distribution of these variants is orchestrated. These dynamics are associated with all DNA-based processes such as DNA replication, repair, transcription, heterochromatin formation and chromosome segregation.
View Article and Find Full Text PDFThe HIRA chaperone complex, comprised of HIRA, UBN1, and CABIN1, collaborates with histone-binding protein ASF1a to incorporate histone variant H3.3 into chromatin in a DNA replication-independent manner. To better understand HIRA's function and mechanism, we integrated HIRA, UBN1, ASF1a, and histone H3.
View Article and Find Full Text PDFEstablishment of a proper chromatin landscape is central to genome function. Here, we explain H3 variant distribution by specific targeting and dynamics of deposition involving the CAF-1 and HIRA histone chaperones. Impairing replicative H3.
View Article and Find Full Text PDFCentromeric protein A (CENP-A) is the epigenetic mark of centromeres. CENP-A replenishment is necessary in each cell cycle to compensate for the dilution associated to DNA replication, but how this is achieved mechanistically is largely unknown. We have developed an assay using Xenopus egg extracts that can recapitulate the spatial and temporal specificity of CENP-A deposition observed in human cells, providing us with a robust in vitro system amenable to molecular dissection.
View Article and Find Full Text PDFHistone proteins wrap DNA to form nucleosome particles that compact eukaryotic genomes while still allowing access for cellular processes such as transcription, replication and DNA repair. Histones exist as different variants that have evolved crucial roles in specialized functions in addition to their fundamental role in packaging DNA. H3.
View Article and Find Full Text PDFIn eukaryotes, DNA is organized into chromatin, a dynamic structure that enables DNA to be accessed for processes such as transcription, replication and repair. To form, maintain or alter this organization according to cellular needs, histones, the main protein component of chromatin, are deposited, replaced, exchanged and post-translationally modified. Histone variants, which exhibit specialized deposition modes in relation to the cell cycle and possibly particular chromatin regions, add an additional level of complexity in the regulation of histone flow.
View Article and Find Full Text PDFThe histone H3 variant CenH3, called CENP-A in humans, is central in centromeric chromatin to ensure proper chromosome segregation. In the absence of an underlying DNA sequence, it is still unclear how CENP-A deposition at centromeres is determined. Here, we purified non-nucleosomal CENP-A complexes to identify direct CENP-A partners involved in such a mechanism and identified HJURP.
View Article and Find Full Text PDFHistone chaperones that escort histones during their overall lifetime from synthesis to sites of usage can participate in various tasks. Their requirement culminates in the dynamic processes of nucleosome assembly and disassembly. In this context, it is important to define the exact role of the histone chaperone Asf1.
View Article and Find Full Text PDFHistones are the fundamental structural proteins intimately associated with eukaryotic DNA to form a highly ordered and condensed nucleoproteic complex termed chromatin. They are the targets of various posttranslational modifications including acetylation, methylation, phosphorylation and ubiquitination that modulate the structure/function of chromatin. The combinatorial nature of histone modifications is hypothesized to define a "histone code" that considerably extends the information potential of the genetic code, giving rise to epigenetic information.
View Article and Find Full Text PDFMaintenance of chromosomal integrity requires tight coordination of histone biosynthesis with DNA replication. Here, we show that extracts from human cells exposed to replication stress display an increased capacity to support replication-coupled chromatin assembly. While in unperturbed S phase, hAsf1 existed in equilibrium between an active form and an inactive histone-free pool, replication stress mobilized the majority of hAsf1 into an active multichaperone complex together with histones.
View Article and Find Full Text PDFDeposition of the major histone H3 (H3.1) is coupled to DNA synthesis during DNA replication and possibly DNA repair, whereas histone variant H3.3 serves as the replacement variant for the DNA-synthesis-independent deposition pathway.
View Article and Find Full Text PDFThe mammalian HIRA gene encodes a histone-interacting protein whose homolog in Xenopus laevis is characterized here. In vitro, recombinant Xenopus HIRA bound purified core histones and promoted their deposition onto plasmid DNA. The Xenopus HIRA protein, tightly associated with nuclear structures in somatic cells, was found in a soluble maternal pool in early embryos.
View Article and Find Full Text PDF