The aim of this study was to understand the uncertainty of estimating loads for observed herbicides and nutrients during a flood event and provide guidance on estimator selection. A high-resolution grab sampling campaign (258 samples over 100 h) was conducted during a flood event in a tropical waterway in Queensland, Australia. Ten herbicides and three nutrient compounds were detected at elevated concentrations.
View Article and Find Full Text PDFThe suitability of passive samplers (Chemcatcher) as an alternative to grab sampling in estimating time-weighted average (TWA) concentrations and total loads of herbicides was assessed. Grab sampling complemented deployments of passive samplers in a tropical waterway in Queensland, Australia, before, during and after a flood event. Good agreement was observed between the two sampling modes in estimating TWA concentrations that was independent of herbicide concentrations ranging over 2 orders of magnitude.
View Article and Find Full Text PDFPesticide exposure threatens many freshwater and estuarine ecosystems around the world. This study examined the temporal and spatial trends of pesticide concentrations in a waterway within an agriculturally developed dry-tropics catchment using a combination of grab and passive sampling methods over a continuous two-year monitoring program. A total of 43 pesticide residues were detected with 7 pesticides exceeding ecologically relevant water quality guidelines/trigger values during the study period and 4 (ametryn, atrazine, diuron, and metolachlor) of these exceeding guidelines for several months.
View Article and Find Full Text PDFPerfluorinated chemicals (PFCs) have been recognised as environmental pollutants that require monitoring. A modified polar organic chemical integrative sampler (POCIS) is able to quantify aqueous PFCs. However, with varying external water velocity, PFC sampling rates (Rs) may change, affecting accuracy of derived water concentrations.
View Article and Find Full Text PDFPassive sampling techniques facilitate the time-integrated measurement of pollutant concentrations through the use of a selective receiving phase. Accurate quantification using passive sampling devices rely on the implementation of methods that will negate the effects of environmental factors (flow, temperature, etc.) or that will allow the calculation of the chemical specific rates of uptake (R(s)) into the passive sampler employed.
View Article and Find Full Text PDFThe use of the adsorbent styrenedivinylbenzene-reverse phase sulfonated (SDB-RPD) Empore disk in a chemcatcher type passive sampler is routinely applied in Australia when monitoring herbicides in aquatic environments. One key challenge in the use of passive samplers is mitigating the potentially confounding effects of varying flow conditions on chemical uptake by the passive sampler. Performance reference compounds (PRCs) may be applied to correct sampling rates (R(s)) for site specific changed in flow and temperature however evidence suggests the use of PRCs is unreliable when applied to adsorbent passive samplers.
View Article and Find Full Text PDFPassive samplers for phosphate were calibrated in the laboratory over a range of flow velocities (0-27 cm s(-1)) and ionic strengths (0-0.62 mol kg(-1)). The observed sampling rates were between 0.
View Article and Find Full Text PDFPassive samplers are typically calibrated under constant flow and concentration conditions. This study assessed whether concentration and/or flow pulses could be integrated using a phosphate passive sampler (P-sampler). Assessment involved three 21-day experiments featuring a pulse in flow rate, a pulse of filterable reactive phosphate (FRP) concentration and a simultaneous concentration and flow pulse.
View Article and Find Full Text PDFPhotochem Photobiol
March 2011
Proper application of sunscreen is essential as an effective public health strategy for skin cancer prevention. Insufficient application is common among sunbathers, results in decreased sun protection and may therefore lead to increased UV damage of the skin. However, no objective measure of sunscreen application thickness (SAT) is currently available for field-based use.
View Article and Find Full Text PDF