This article covers selected properties of organic-inorganic thin films of hybrid perovskites with the summary formulas CHNHI, where = Pb, Cd, Ge, Sn, Zn. The paper discusses not only the history, general structure, applications of perovskites and the basics of the theory of nonlinear optics, but also the results of experimental research on their structural, spectroscopic, and nonlinear optical properties. The samples used in all presented studies were prepared in the physical vapor deposition process by using co-deposition from two independent thermal sources containing the organic and inorganic parts of individual perovskites.
View Article and Find Full Text PDFThe main purposes of this work are designing new hybrid structures based on alumina nanoporous membranes with specific metallosupramolecular structure as well as studies of their usefulness in nonlinear optics (NLO). The NLO studies of the hybrid material is performed on the basis of two methods: the first by the Maker fringe technique, where the second harmonic generation (SHG) signal is recorded by rotating the sample; and the second by SHG imaging microscopy, where the SHG signal is collected point by point on the sample surface. The enhanced SHG signals were obtained without the use of the corona poling method needed during the experiment on thin films in our previous works and clearly shows the efficiency of hybrid materials based on nanoporous membranes as promising materials in devices developed based on NLO.
View Article and Find Full Text PDFThe development of new applications based on glass doped with nanoparticles is growing in interest during the last years. The structure and properties of Ca-based silicate nanoparticles formed in situ in a silica matrix through a phase separation mechanism were investigated by using Molecular Dynamics simulations and compared to nanoparticles formed from MgO-codoping. We showed that such nanoparticles have non-spherical shape, are amorphous and inhomogeneously distributed in the host glass.
View Article and Find Full Text PDFSecond-order nonlinear optics is the base for a large variety of devices aimed at the active manipulation of light. However, physical principles restrict its occurrence to non-centrosymmetric, anisotropic matter. This significantly limits the number of base materials exhibiting nonlinear optics.
View Article and Find Full Text PDF