Skeletal muscle atrophy is commonly associated with immobilization, ageing, and catabolic diseases such as diabetes and cancer cachexia. Epigenetic regulation of gene expression resulting from chromatin remodeling through histone acetylation has been implicated in muscle disuse. The present work was designed to test the hypothesis that treatment with trichostatin A (TSA), a histone deacetylase inhibitor, would partly counteract unloading-induced muscle atrophy.
View Article and Find Full Text PDFPurpose: We explored whether altered expression of factors tuning mitochondrial metabolism contributes to muscular adaptations with endurance training in the condition of lowered ambient oxygen concentration (hypoxia) and whether these adaptations relate to oxygen transfer as reflected by subsarcolemmal mitochondria and oxygen metabolism in muscle.
Methods: Male volunteers completed 30 bicycle exercise sessions in normoxia or normobaric hypoxia (4,000 m above sea level) at 65% of the respective peak aerobic power output. Myoglobin content, basal oxygen consumption, and re-oxygenation rates upon reperfusion after 8 min of arterial occlusion were measured in vastus muscles by magnetic resonance spectroscopy.
Long-term spaceflight induces hypokinesia and hypodynamia, which, along microgravity per se, result in a number of significant physiological alterations, such as muscle atrophy, force reduction, insulin resistance, substrate use shift from fats to carbohydrates, and bone loss. Each of these adaptations could turn to serious health deterioration during the long-term spaceflight needed for planetary exploration. We hypothesized that resveratrol (RES), a natural polyphenol, could be used as a nutritional countermeasure to prevent muscle metabolic and bone adaptations to 15 d of rat hindlimb unloading.
View Article and Find Full Text PDFWith a remarkable plasticity, skeletal muscle adapts to an altered functional demand. Muscle angio-adaptation can either involve the growth or the regression of capillaries as respectively observed in response to endurance training or muscle unloading. Whereas the molecular mechanisms that regulate exercise-induced muscle angiogenesis have been extensively studied, understanding how muscle unloading can in contrast lead to capillary regression has received very little attention.
View Article and Find Full Text PDFVasohibin-1 (VASH-1) was recently identified as a negative feedback regulator of angiogenesis. Here, we analyzed how the expression of the two active anti-angiogenic VASH-1 isoforms p36 and p42 was altered during physiological and pathological muscle angio-adaptation. Our results showed that VASH-1 protein expression was muscle-type specific, with higher levels detected in less vascularized muscles.
View Article and Find Full Text PDFAlthough several lines of evidence link muscle-derived oxidants and inflammation to skeletal muscle wasting via regulation of apoptosis and proteolysis, little information is currently available on muscle repair. The present work was designed to study oxidative stress response, inflammatory cytokines, apoptotic, or proteolytic pathways during the early (1 and 5 days) and later (14 days) stages of the regrowth process subsequent to 14 days of hindlimb unloading. During the early stages of reloading, muscle mass recovery (day 5) was facilitated by transcriptional downregulation (day 1) of pathways involved in muscle proteolysis [mu-calpain, atrogin-1/muscle atrophy F-box (MAFbx), and muscle RING finger-1/(MuRF1) mRNA] and upregulation of an autophagy-related protein Beclin-1 (day 5).
View Article and Find Full Text PDFBackground: Although identified in several bird species, the biological role of the avian homolog of mammalian uncoupling proteins (avUCP) remains extensively debated. In the present study, the functional properties of isolated mitochondria were examined in physiological or pharmacological situations that induce large changes in avUCP expression in duckling skeletal muscle.
Results: The abundance of avUCP mRNA, as detected by RT-PCR in gastrocnemius muscle but not in the liver, was markedly increased by cold acclimation (CA) or pharmacological hyperthyroidism but was down-regulated by hypothyroidism.
Calcium-dependent signalling pathways are believed to play an important role in skeletal muscle atrophy, but whether intracellular Ca(2+) homeostasis is affected in that situation remains obscure. We show here that there is a 20% atrophy of the fast-type flexor digitorum brevis (FDB) muscle in rats hind limb unloaded (HU) for 2 weeks, with no change in fibre type distribution. In voltage-clamp experiments, the amplitude of the slow Ca(2+) current was found similar in fibres from control and HU animals.
View Article and Find Full Text PDFStriated muscle exhibits a pronounced structural-functional plasticity in response to chronic alterations in loading. We assessed the implication of focal adhesion kinase (FAK) signalling in mechano-regulated differentiation of slow-oxidative muscle. Load-dependent consequences of FAK signal modulation were identified using a multi-level approach after electrotransfer of rat soleus muscle with FAK-expression plasmid vs.
View Article and Find Full Text PDFExposure to reduced activity induces skeletal muscle atrophy. Oxidative stress might contribute to muscle wasting via proteolysis activation. This study aimed to test two hypotheses in rats.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
July 2005
The hypothesis was tested that differential, coregulated transcriptional adaptations of various cellular pathways would occur early with increased mechanical loading of atrophied skeletal muscle and relate to concurrent damage of muscle fibers. Atrophy and slow-to-fast fiber transformation of rat soleus muscle was provoked by 14 days of hindlimb suspension (HS). Subsequent reloading of hindlimbs caused a fourfold increase in the percentage of muscle fibers, demonstrating endomysial tenascin-C staining.
View Article and Find Full Text PDFThis study tried to differentiate the consequences of chronic hypoxia on the electrophysiological and physiological properties and the histological characteristics of slow and fast muscles in rats. Animals inhaled a 10% O(2) concentration for a 1-month period. Then, slow [soleus (SOL)] and fast [extensor digitorum longus (EDL)] muscles were analyzed in vitro by physiological and electrophysiological measurements and histological analyses.
View Article and Find Full Text PDFBiological actions of GH on muscle growth and metabolism are mediated through specific trans-membrane receptors. The aim of this study was to determine GH receptor (GHR) mRNA expression in muscle atrophy. GHR gene expression in the rat was investigated by in situ hybridization and RT-PCR in slow-twitch oxidative muscle [soleus (SOL)] and fast-twitch glycolytic muscle [extensor digitorum longus (EDL)] after 7 and 35 d of hindlimb unloading.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
March 2003
The hypothesis was tested that mechanical loading, induced by hindlimb suspension and subsequent reloading, affects expression of the basement membrane components tenascin-C and fibronectin in the belly portion of rat soleus muscle. One day of reloading, but not the previous 14 days of hindlimb suspension, led to ectopic accumulation of tenascin-C and an increase of fibronectin in the endomysium of a proportion (8 and 15%) of muscle fibers. Large increases of tenascin-C (40-fold) and fibronectin (7-fold) mRNA within 1 day of reloading indicates the involvement of pretranslational mechanisms in tenascin-C and fibronectin accumulation.
View Article and Find Full Text PDFUsing commercially available microarray technology, we investigated a series of transcriptional adaptations caused by atrophy of rat m. soleus due to 35 days of hindlimb suspension. We detected 395 out of 1,200 tested transcripts, which reflected 1%-5% of totally expressed genes.
View Article and Find Full Text PDF