Background: Despite achieving endoscopic remission, over 20% of inflammatory bowel disease (IBD) patients experience chronic abdominal pain. Visceral pain and the microbiome exhibit sex-dependent interactions, while visceral pain in IBD shows a sex bias. Our aim was to evaluate whether post-inflammatory microbial perturbations contribute to visceral hypersensitivity in a sex-dependent manner.
View Article and Find Full Text PDFCancer Immunol Immunother
January 2024
Collagen expression and structure in the tumour microenvironment are associated with tumour development and therapy response. Leukocyte-associated immunoglobulin-like receptor-1 (LAIR-1) is a widely expressed inhibitory collagen receptor. LAIR-2 is a soluble homologue of LAIR-1 that competes for collagen binding.
View Article and Find Full Text PDFMetabolomics is a mainstream strategy for investigating microbial metabolism. One emerging application of metabolomics is the systematic quantification of metabolic boundary fluxes - the rates at which metabolites flow into and out of cultured cells. Metabolic boundary fluxes can capture complex metabolic phenotypes in a rapid assay, allow computational models to be built that predict the behavior of cultured organisms, and are an emerging strategy for clinical diagnostics.
View Article and Find Full Text PDFInflammatory bowel disease (IBD), comprising Crohn's disease and Ulcerative colitis, is a relapsing and remitting disease of the gastrointestinal tract, presenting with chronic inflammation, ulceration, gastrointestinal bleeding, and abdominal pain. Up to 80% of patients suffering from IBD experience acute pain, which dissipates when the underlying inflammation and tissue damage resolves. However, despite achieving endoscopic remission with no signs of ongoing intestinal inflammation or damage, 30-50% of IBD patients in remission experience chronic abdominal pain, suggesting altered sensory neuronal processing in this disorder.
View Article and Find Full Text PDFMetabolomics is a mainstream approach for investigating the metabolic underpinnings of complex biological phenomena and is increasingly being applied to large-scale studies involving hundreds or thousands of samples. Although metabolomics methods are robust in smaller-scale studies, they can be challenging to apply to larger cohorts due to the inherent variability of liquid chromatography mass spectrometry (LC-MS). Much of this difficulty results from the time-dependent changes in the LC-MS system, which affects both the qualitative and quantitative performances of the instrument.
View Article and Find Full Text PDFShort chain fatty acids (SCFAs; including acetate, propionate, and butyrate) are an important class of biological molecules that play a major role in modulating host-microbiome interactions. Despite significant research into SCFA-mediated biological mechanisms, absolute quantification of these molecules in their native form by liquid chromatography mass spectrometry is challenging due to their relatively poor chromatographic properties. Herein, we introduce SQUAD, an isotope-based strategy for absolute quantification of SCFAs in complex biological samples.
View Article and Find Full Text PDFInflammatory bowel diseases (IBD) are chronic inflammatory conditions of the gastrointestinal tract. IBD are associated with a high prevalence of cognitive, behavioural and emotional comorbidities, including anxiety and depression. The link between IBD and the development of behavioural comorbidities is poorly understood.
View Article and Find Full Text PDFGlycoprotein VI (GPVI) mediates collagen-induced platelet activation after vascular damage and is an important contributor to the onset of thrombosis, heart attack, and stroke. Animal models of thrombosis have identified GPVI as a promising target for antithrombotic therapy. Although for many years the crystal structure of GPVI has been known, the essential details of its interaction with collagen have remained elusive.
View Article and Find Full Text PDFThe mechanisms that drive leukocyte recruitment to the kidney are incompletely understood. Dipeptidase-1 (DPEP1) is a major neutrophil adhesion receptor highly expressed on proximal tubular cells and peritubular capillaries of the kidney. Renal ischemia reperfusion injury (IRI) induces robust neutrophil and monocyte recruitment and causes acute kidney injury (AKI).
View Article and Find Full Text PDFHSP47 (heat shock protein 47) is a collagen-specific molecular chaperone that is essential for procollagen folding and function. Previous studies have shown that HSP47 binding requires a critical Arg residue at the Y position of the (Gly-Xaa-Yaa) repeats of collagen; however, the exact binding sites of HSP47 on native collagens are not fully defined. To address this, we mapped the HSP47 binding sites on collagens through an ELISA binding assay using collagen toolkits, synthetic collagen peptides covering the entire amino acid sequences of collagen types II and III assembled in triple-helical conformation.
View Article and Find Full Text PDFBackground: Multimerin 1 (human: MMRN1, mouse: Mmrn1) is a homopolymeric, adhesive, platelet and endothelial protein that binds to von Willebrand factor and enhances platelet adhesion to fibrillar collagen ex vivo.
Objectives: To examine the impact of Mmrn1 deficiency on platelet adhesive function, and the molecular motifs in fibrillar collagen that bind MMRN1 to enhance platelet adhesion.
Methods: Mmrn1-deficient mice were generated and assessed for altered platelet adhesive function.
Cell Mol Gastroenterol Hepatol
July 2021
Background & Aims: Despite achieving endoscopic remission, more than 20% of inflammatory bowel disease patients experience chronic abdominal pain. These patients have increased rectal transient receptor potential vanilloid-1 receptor (TRPV1) expression, a key transducer of inflammatory pain. Because inflammatory bowel disease patients in remission exhibit dysbiosis and microbial manipulation alters TRPV1 function, our goal was to examine whether microbial perturbation modulated transient receptor potential function in a mouse model.
View Article and Find Full Text PDFEarly life exposure to microbes plays an important role in immune system development. Germ-free mice, or mice colonized with a low-diversity microbiota, exhibit high serum IgE levels. An increase in microbial richness, providing it occurs in a critical developmental window early in life, leads to inhibition of this hygiene-induced IgE.
View Article and Find Full Text PDFMatrix metalloproteinase-3 (MMP-3) participates in normal extracellular matrix turnover during embryonic development, organ morphogenesis and wound healing, and in tissue-destruction associated with aneurysm, cancer, arthritis and heart failure. Despite its inability to cleave triple-helical collagens, MMP-3 can still bind to them, but the mechanism, location and role of binding are not known. We used the Collagen Toolkits, libraries of triple-helical peptides that embrace the entire helical domains of collagens II and III, to map MMP-3 interaction sites.
View Article and Find Full Text PDFFibrillar collagens have mechanical and biological roles, providing tissues with both tensile strength and cell binding sites which allow molecular interactions with cell-surface receptors such as integrins. A key question is: how do collagens allow tissue flexibility whilst maintaining well-defined ligand binding sites? Here we show that proline residues in collagen glycine-proline-hydroxyproline (Gly-Pro-Hyp) triplets provide local conformational flexibility, which in turn confers well-defined, low energy molecular compression-extension and bending, by employing two-dimensional C-C correlation NMR spectroscopy on C-labelled intact ex vivo bone and in vitro osteoblast extracellular matrix. We also find that the positions of Gly-Pro-Hyp triplets are highly conserved between animal species, and are spatially clustered in the currently-accepted model of molecular ordering in collagen type I fibrils.
View Article and Find Full Text PDFPharmacological inhibition of platelet collagen interaction is a promising therapeutic strategy to treat intra-vascular thrombosis. S007-867 is a novel synthetic inhibitor of collagen-induced platelet aggregation. It has shown better antithrombotic protection than aspirin and clopidogrel with minimal bleeding tendency in mice.
View Article and Find Full Text PDFThe platelet receptors glycoprotein (Gp)VI, integrin αβ and GpIb/V/IX mediate platelet adhesion and activation during thrombogenesis. Increases of intracellular Ca ([Ca]) are key signals during platelet activation; however, their relative importance in coupling different collagen receptors to functional responses under shear conditions remains unclear. To study shear-dependent, receptor-specific platelet responses, we used collagen or combinations of receptor-specific collagen-mimetic peptides as substrates for platelet adhesion and activation in whole human blood under arterial flow conditions and compared real-time and endpoint parameters of thrombus formation alongside [Ca] measurements using confocal imaging.
View Article and Find Full Text PDFThe small leucine-rich proteoglycans (SLRPs) are important regulators of extracellular matrix assembly and cell signalling. We have determined crystal structures at ~2.2Å resolution of human fibromodulin and chondroadherin, two collagen-binding SLRPs.
View Article and Find Full Text PDFThe collagen-binding integrins recognise collagen through their inserted (I) domain, where co-ordination of a Mg ion in the metal ion-dependent site is reorganised by ligation by a collagen glutamate residue found in specific collagen hexapeptide motifs. Here we show that GROGER, found in the N-terminal domain of collagens I and III, is only weakly recognised by α10β1, an important collagen receptor on chondrocytes, contrasting with the other collagen-binding integrins. Alignment of I domain sequence and molecular modelling revealed a clash between a unique arginine residue (R215) in α10β1 and the positively-charged GROGER.
View Article and Find Full Text PDFMultimerin 1 (MMRN1) is a massive, homopolymeric protein that is stored in platelets and endothelial cells for activation-induced release. In vitro, MMRN1 binds to the outer surfaces of activated platelets and endothelial cells, the extracellular matrix (including collagen) and von Willebrand factor (VWF) to support platelet adhesive functions. VWF associates with MMRN1 at high shear, not static conditions, suggesting that shear exposes cryptic sites within VWF that support MMRN1 binding.
View Article and Find Full Text PDFThe hallmark of fibrotic disorders is a highly cross-linked and dense collagen matrix, a property driven by the oxidative action of lysyl oxidase. Other fibrosis-associated proteins also contribute to the final collagen matrix properties, one of which is fibromodulin. Its interactions with collagen affect collagen cross-linking, packing, and fibril diameter.
View Article and Find Full Text PDFCollagen is frequently advocated as a scaffold for use in regenerative medicine. Increasing the mechanical stability of a collagen scaffold is widely achieved by cross-linking using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) and N-hydroxysuccinimide (NHS). However, this treatment consumes the carboxylate-containing amino acid sidechains that are crucial for recognition by the cell-surface integrins, abolishing cell adhesion.
View Article and Find Full Text PDFA bacterial collagen-like protein Scl2 has been developed as a recombinant collagen model system to host human collagen ligand-binding sequences, with the goal of generating biomaterials with selective collagen bioactivities. Defined binding sites in human collagen for integrins, fibronectin, heparin, and MMP-1 have been introduced into the triple-helical domain of the bacterial collagen and led to the expected biological activities. The modular insertion of activities is extended here to the discoidin domain receptors (DDRs), which are collagen-activated receptor tyrosine kinases.
View Article and Find Full Text PDFThe osteoclast-associated receptor (OSCAR) is a collagen-binding immune receptor with important roles in dendritic cell maturation and activation of inflammatory monocytes as well as in osteoclastogenesis. The crystal structure of the OSCAR ectodomain is presented, both free and in complex with a consensus triple-helical peptide (THP). The structures revealed a collagen-binding site in each immunoglobulin-like domain (D1 and D2).
View Article and Find Full Text PDF