Publications by authors named "Dominique Baillis"

This study investigates the incorporation of algae-based activated carbon into polyurethane foam to improve a biocomposite for gasoil sorption. The biocomposites were thoroughly analyzed using various techniques to examine the properties of both the blank foam and the algae activated carbon foam with a carbon content of 4.41 mass% and particle diameter of 500 µm.

View Article and Find Full Text PDF

Modelling effective thermal properties is crucial for optimizing the thermal performance of materials such as new green insulating fibrous media. In this study, a numerical model is proposed to calculate the effective thermal conductivity of these materials. The fibers are considered to be non-overlapping and randomly oriented in space.

View Article and Find Full Text PDF

The growing awareness of the environment and sustainable development has prompted the search for solutions involving the development of bio-based composite materials for insulating applications, offering an alternative to traditional synthetic materials such as glass- and carbon-reinforced composites. In this study, we investigate the thermal and microstructural properties of new biocomposite insulating materials derived from flaxseed-gum-filled epoxy, with and without the inclusion of reinforced flax fibers. A theoretical approach is proposed to estimate the thermal conductivity, while the composite's microstructure is characterized using X-ray Computed Tomography and image analysis.

View Article and Find Full Text PDF

The present work aims to characterize the radiative thermal properties albedo and optical thickness of fibers using a FTIR spectrometer. Measurements of normal/directional transmittance and normal and hemispherical reflectance are performed. The numerical determination of the radiative properties is conducted through the computational treatment of the Radiative Transfer Equation (RTE) using the Discrete Ordinate Method (DOM), together with the inverse method, which is done through Gauss linearization.

View Article and Find Full Text PDF

Oil leaks (or spills) into the aquatic environment are considered a natural disaster and a severe environmental problem for the entire planet. Samples of polyurethane (PU) composites were prepared with high specific surface area carbon nanotubes (CNT) to investigate crude oil sorption. Scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FT-IR), density measurements, and mechanical compression tests were used to characterize the polyurethane-carbon PU-CNT prepared samples.

View Article and Find Full Text PDF

This paper focuses on the computational modeling of the effective elastic properties of irregular closed-cell foams. The recent Hill's lemma periodic computational homogenization approach is used to predict the effective elastic properties. Three-dimensional (3D) rendering is reconstructed with the tomography slices of the real irregular closed-cell foam.

View Article and Find Full Text PDF

Modeling of radiation characteristics of semitransparent media containing particles or bubbles in the independent scattering limit is examined. The existing radiative properties models of a single particle in an absorbing medium using the approaches based on (1) the classical Mie theory neglecting absorption by the matrix, (2) the far field approximation, and (3) the near field approximation are reviewed. Comparison between models and experimental measurements are carried out not only for the radiation characteristics but also for hemispherical transmittance and reflectance of porous fused quartz.

View Article and Find Full Text PDF

A modified two-flux approximation is suggested for calculating the hemispherical transmittance and reflectance of a refracting, absorbing, and scattering medium in the case of collimated irradiation of the sample along the normal to the interface. The Fresnel reflection is taken into account in this approach. It is shown that the new approximation is rather accurate for the model transport scattering function.

View Article and Find Full Text PDF

An improved method used to determine the absorption and scattering characteristics of a weakly absorbing substance containing bubbles is suggested. The identification procedure is based on a combination of directional-hemispherical measurements and predictions of Mie-scattering theory including approximate relations for a medium with polydisperse bubbles. A modified two-flux approximation is suggested for the calculation of directional-hemispherical transmittance and reflectance of a refracting and scattering medium.

View Article and Find Full Text PDF

We report experimental measurement of radiation characteristics of fused quartz containing bubbles over the spectral region from 1.67 to 3.5 microm.

View Article and Find Full Text PDF