Publications by authors named "Dominique Arrouays"

Various stakeholders, such as modelers, policy makers, farmers, and environmental regulators need reliable soil bulk density and coarse fragment content data. These two soil parameters are necessary to calculate soil carbon and nutrients stocks, to estimate water availability for plants, or to assess soil compaction. However, measuring these two parameters is labor intensive and time consuming.

View Article and Find Full Text PDF

Remote sensing is an important tool for monitoring soil information. However, accurate spatial modeling of soil organic matter (SOM) in areas with high vegetation coverage, typically represented by agroecosystems, remains a challenge for field-scale estimation using remote sensing. To date, studies have focused on using single-period or multi-temporal vegetation information to characterize SOM.

View Article and Find Full Text PDF

Adopting land management practices that increase the stock of soil organic carbon (SOC) in croplands is widely promoted as a win-win strategy to enhance soil health and mitigate climate change. In this context, the definition of reference SOC content and stock values is needed to provide reliable targets to farmers, policymakers, and stakeholders. In this study, we used the LUCAS dataset to compare different methods for evaluating reference SOC content and stock values in European croplands topsoils (0-20 cm depth).

View Article and Find Full Text PDF

Contamination of the environment by pesticide residues is a growing concern given their widespread presence in the environment and their effects on ecosystems. Only a few studies have addressed the occurrence of pesticides in soils, and their results highlighted the need for further research on the persistence and risks induced by those substances. We monitored 111 pesticide residues (48 fungicides, 36 herbicides, 25 insecticides and/or acaricides, and two safeners) in 47 soils sampled across France under various land uses (arable lands, vineyards, orchards, forests, grasslands, and brownfields).

View Article and Find Full Text PDF

Increasing soil organic carbon (SOC) stocks is a promising way to mitigate the increase in atmospheric CO concentration. Based on a simple ratio between CO anthropogenic emissions and SOC stocks worldwide, it has been suggested that a 0.4% (4 per 1000) yearly increase in SOC stocks could compensate for current anthropogenic CO emissions.

View Article and Find Full Text PDF

To respect the Paris agreement targeting a limitation of global warming below 2°C by 2100, and possibly below 1.5°C, drastic reductions of greenhouse gas emissions are mandatory but not sufficient. Large-scale deployment of other climate mitigation strategies is also necessary.

View Article and Find Full Text PDF

Although land use drives soil bacterial diversity and community structure, little information about the bacterial interaction networks is available. Here, we investigated bacterial co-occurrence networks in soils under different types of land use (forests, grasslands, crops and vineyards) by sampling 1798 sites in the French Soil Quality Monitoring Network covering all of France. An increase in bacterial richness was observed from forests to vineyards, whereas network complexity respectively decreased from 16,430 links to 2,046.

View Article and Find Full Text PDF

Soil organic carbon (SOC) is important for its contributions to agricultural production, food security, and ecosystem services. Increasing SOC stocks can contribute to mitigate climate change by transferring atmospheric CO into long-lived soil carbon pools. The launch of the 4 per 1000 initiative has resulted in an increased interest in developing methods to quantity the additional SOC that can be stored in soil under different management options.

View Article and Find Full Text PDF

The soil's pH is the single most important indicator of the soil's quality, whether for agriculture, pollution control or environmental health and ecosystem functioning. Well documented data on soil pH are sparse for the whole of China - data for only 4700 soil profiles were available from China's Second National Soil Inventory. By combining those data, standardized for the topsoil (0-20 cm), with 17 environmental covariates at a fine resolution (3 arc-second or 90 m) we have predicted the soil's pH at that resolution, that is at more than 10 points.

View Article and Find Full Text PDF

Over the last two decades, a considerable effort has been made to decipher the biogeography of soil microbial communities as a whole, from small to broad scales. In contrast, few studies have focused on the taxonomic groups constituting these communities; thus, our knowledge of their ecological attributes and the drivers determining their composition and distribution is limited. We applied a pyrosequencing approach targeting 16 ribosomal RNA (rRNA) genes in soil DNA to a set of 2173 soil samples from France to reach a comprehensive understanding of the spatial distribution of bacteria and archaea and to identify the ecological processes and environmental drivers involved.

View Article and Find Full Text PDF

Although soils have a high potential to offset CO emissions through its conversion into soil organic carbon (SOC) with long turnover time, it is widely accepted that there is an upper limit of soil stable C storage, which is referred to SOC saturation. In this study we estimate SOC saturation in French topsoil (0-30cm) and subsoil (30-50cm), using the Hassink equation and calculate the additional SOC sequestration potential (SOC) by the difference between SOC saturation and fine fraction C on an unbiased sampling set of sites covering whole mainland France. We then map with fine resolution the geographical distribution of SOC over the French territory using a regression Kriging approach with environmental covariates.

View Article and Find Full Text PDF

Legacy soil data have been produced over 70 years in nearly all countries of the world. Unfortunately, data, information and knowledge are still currently fragmented and at risk of getting lost if they remain in a paper format. To process this legacy data into consistent, spatially explicit and continuous global soil information, data are being rescued and compiled into databases.

View Article and Find Full Text PDF

Although numerous studies have demonstrated the key role of bacterial diversity in soil functions and ecosystem services, little is known about the variations and determinants of such diversity on a nationwide scale. The overall objectives of this study were i) to describe the bacterial taxonomic richness variations across France, ii) to identify the ecological processes (i.e.

View Article and Find Full Text PDF

Many studies have highlighted significant interactions between soil C reservoir dynamics and global climate and environmental change. However, in order to estimate the future soil organic carbon sequestration potential and related ecosystem services well, more spatially detailed predictions are needed. The present study made detailed predictions of future spatial evolution (at 250 m resolution) of topsoil SOC driven by climate change and land use change for France up to the year 2100 by taking interactions between climate, land use and soil type into account.

View Article and Find Full Text PDF

Spatial scaling of microorganisms has been demonstrated over the last decade. However, the processes and environmental filters shaping soil microbial community structure on a broad spatial scale still need to be refined and ranked. Here, we compared bacterial and fungal community composition turnovers through a biogeographical approach on the same soil sampling design at a broad spatial scale (area range: 13300 to 31000 km2): i) to examine their spatial structuring; ii) to investigate the relative importance of environmental selection and spatial autocorrelation in determining their community composition turnover; and iii) to identify and rank the relevant environmental filters and scales involved in their spatial variations.

View Article and Find Full Text PDF

Polychlorinated biphenyls (PCBs) are highly toxic environmental pollutants that can accumulate in soils. We consider the problem of explaining and mapping the spatial distribution of PCBs using a spatial data set of 105 PCB-187 measurements from a region in the north of France. A large proportion of our data (35%) fell below a quantification limit (QL), meaning that their concentrations could not be determined to a sufficient degree of precision.

View Article and Find Full Text PDF

Fungi constitute an important group in soil biological diversity and functioning. However, characterization and knowledge of fungal communities is hampered because few primer sets are available to quantify fungal abundance by real-time quantitative PCR (real-time Q-PCR). The aim in this study was to quantify fungal abundance in soils by incorporating, into a real-time Q-PCR using the SYBRGreen® method, a primer set already used to study the genetic structure of soil fungal communities.

View Article and Find Full Text PDF

Persistent organic pollutants (POPs) impact upon human and animal health and the wider environment. It is important to determine where POPs are found and the spatial pattern of POP variation. The concentrations of 90 molecules which are members of four families of POPs and two families of herbicides were measured within a region of Northern France as part of the French National Soil Monitoring Network (RMQS: Réseau de Mesures de la Qualité des Sols).

View Article and Find Full Text PDF

Lindane is a persistent organochlorine insecticide and the use of this insecticide in agriculture was banned in France in 1998. In this study we investigated the concentrations of lindane in top soil in Northern France and used robust geostatistics to map the geographical distribution of lindane. The study was based on a 16 km x 16 km grid covering an area of ca 25,000 km(2).

View Article and Find Full Text PDF

This study provides the first maps of variations in bacterial community structure on a broad scale based on genotyping of DNA extracts from 593 soils from four different regions of France (North, Brittany, South-East and Landes). Soils were obtained from the soil library of RMQS ('Réseau de Mesures de la Qualité des Sols' = French soil quality monitoring network). The relevance of a biogeographic approach for studying bacterial communities was demonstrated by the great variability in community structure and specific geographical patterns within and between the four regions.

View Article and Find Full Text PDF

Whether bacteria display spatial patterns of distribution and at which level of taxonomic organization such patterns can be observed are central questions in microbial ecology. Here we investigated how the total and relative abundances of eight bacterial taxa at the phylum or class level were spatially distributed in a pasture by using quantitative PCR and geostatistical modelling. The distributions of the relative abundance of most taxa varied by a factor of 2.

View Article and Find Full Text PDF

There is ample evidence that microbial processes can exhibit large variations in activity on a field scale. However, very little is known about the spatial distribution of the microbial communities mediating these processes. Here we used geostatistical modelling to explore spatial patterns of size and activity of the denitrifying community, a functional guild involved in N-cycling, in a grassland field subjected to different cattle grazing regimes.

View Article and Find Full Text PDF