Publications by authors named "Dominique A Ramirez"

Liquid-liquid phase separation (LLPS) is thought to be a main driving force in the formation of membraneless organelles. Examples of such organelles include the centrosome, central spindle, and stress granules. Recently, it has been shown that coiled-coil (CC) proteins, such as the centrosomal proteins pericentrin, spd-5, and centrosomin, might be capable of LLPS.

View Article and Find Full Text PDF

Membraneless liquid compartments based on phase-separating biopolymers have been observed in diverse cell types and attributed to weak multivalent interactions predominantly based on intrinsically disordered domains. The design of liquid-liquid phase separated (LLPS) condensates based on de novo designed tunable modules that interact in a well-understood, controllable manner could improve our understanding of this phenomenon and enable the introduction of new features. Here we report the construction of CC-LLPS in mammalian cells, based on designed coiled-coil (CC) dimer-forming modules, where the stability of CC pairs, their number, linkers, and sequential arrangement govern the transition between diffuse, liquid and immobile condensates and are corroborated by coarse-grained molecular simulations.

View Article and Find Full Text PDF

Liquid-liquid phase separation (LLPS) is thought to be a main driving force in the formation of membraneless organelles. Examples of such organelles include the centrosome, central spindle, and stress granules. Recently, it has been shown that coiled-coil (CC) proteins, such as the centrosomal proteins pericentrin, spd-5, and centrosomin, might be capable of LLPS.

View Article and Find Full Text PDF

Vinblastine (VBL) is a vinca alkaloid-class cytotoxic chemotherapeutic that causes microtubule disruption and is typically used to treat hematologic malignancies. VBL is characterized by a narrow therapeutic index, with key dose-limiting toxicities being myelosuppression and neurotoxicity. Pharmacokinetics (PK) of VBL is primarily driven by ABCB1-mediated efflux and CYP3A4 metabolism, creating potential for drug-drug interaction.

View Article and Find Full Text PDF

Insulin has been commonly adopted as a peptide drug to treat diabetes as it facilitates the uptake of glucose from the blood. The development of oral insulin remains elusive over decades owing to its susceptibility to the enzymes in the gastrointestinal tract and poor permeability through the intestinal epithelium upon dimerization. Recent experimental studies have revealed that certain O-linked glycosylation patterns could enhance insulin's proteolytic stability and reduce its dimerization propensity, but understanding such phenomena at the molecular level is still difficult.

View Article and Find Full Text PDF

Cannabidiol (CBD), the major non-psychoactive compound found in cannabis, is frequently used both as a nutraceutical and therapeutic. Despite anecdotal evidence as an anticancer agent, little is known about the effect CBD has on cancer cells. Given the intractability and poor prognoses of brain cancers in human and veterinary medicine, we sought to characterize the cytotoxicity of CBD on human and canine gliomas.

View Article and Find Full Text PDF

Since the discovery of CHD1L in 2008, it has emerged as an oncogene implicated in the pathology and poor prognosis of a variety of cancers, including gastrointestinal cancers. However, a mechanistic understanding of CHD1L as a driver of colorectal cancer has been limited. Until now, there have been no reported inhibitors of CHD1L, also limiting its development as a molecular target.

View Article and Find Full Text PDF
Article Synopsis
  • - Metastatic colorectal cancer (mCRC) significantly contributes to cancer-related deaths with current treatments only relieving symptoms and resulting in a low survival rate of around 11%.
  • - T-cell factor (TCF) transcription plays a crucial role in mCRC by driving a process called epithelial-mesenchymal transition (EMT), leading to drug resistance and cancer spread.
  • - Researchers have developed TOP2A ATP-competitive inhibitors that target TCF-transcription without causing DNA damage, representing a promising new treatment strategy for mCRC and potentially other cancers.
View Article and Find Full Text PDF

Cyclophosphamide (CP), a prodrug that is enzymatically converted to the cytotoxic 4-hydroxycyclophosphamide (4OHCP) by hepatic enzymes, is commonly used in both human and veterinary medicine to treat cancers and modulate the immune system. We investigated the metabolism of CP in humans, dogs, cats, and mice using liver microsomes; apparent , , and intrinsic clearance ( / ) parameters were estimated. The interspecies and intraspecies variations in kinetics were vast.

View Article and Find Full Text PDF