Single Molecule Localization Microscopy (SMLM) is a recently emerged optical imaging method that was shown to achieve a resolution in the order of tens of nanometers in intact cells. Novel high resolution imaging methods might be crucial for understanding of how the chromatin, a complex of DNA and proteins, is arranged in the eukaryotic cell nucleus. Such an approach utilizing switching of a fluorescent, DNA-binding dye Vybrant® DyeCycle™ Violet has been previously demonstrated by us (Żurek-Biesiada et al.
View Article and Find Full Text PDFHigher order chromatin structure is not only required to compact and spatially arrange long chromatids within a nucleus, but have also important functional roles, including control of gene expression and DNA processing. However, studies of chromatin nanostructures cannot be performed using conventional widefield and confocal microscopy because of the limited optical resolution. Various methods of superresolution microscopy have been described to overcome this difficulty, like structured illumination and single molecule localization microscopy.
View Article and Find Full Text PDFSeveral approaches have been described to fluorescently label and image DNA and chromatin in situ on the single-molecule level. These superresolution microscopy techniques are based on detecting optically isolated, fluorescently tagged anti-histone antibodies, fluorescently labeled DNA precursor analogs, or fluorescent dyes bound to DNA. Presently they suffer from various drawbacks such as low labeling efficiency or interference with DNA structure.
View Article and Find Full Text PDFDNA-bound Hoechst 33258 is readily excited with UV light and emits blue fluorescence, however, upon exposure to UV, the dye undergoes photobleaching as well as photoconversion to a blue-excited green-emitting form. We demonstrate that the UV-generated green-emitting form of Hoechst 33258 exhibits spectral properties very similar to the form of the dye that can be obtained by subjecting it to an acidic environment (pH 0.5-3.
View Article and Find Full Text PDFHoechst 33258, DAPI and Vybrant DyeCycle are commonly known DNA fluorescent dyes that are excited by UV and emit in the blue region of the spectrum of visible light. Conveniently, they leave the reminder of the spectrum for microscopy detection of other cellular targets labeled with probes emitting in green, yellow or red. However, an exposure of these dyes to UV induces their photoconversion and results in production of the forms of these dyes that are excited by blue light and show fluoresce maxima in green and a detectable fluorescence in yellow and orange regions of the spectrum.
View Article and Find Full Text PDF