This study aimed to assess the utility of optic nerve head (onh) en-face images, captured with scanning laser ophthalmoscopy (slo) during standard optical coherence tomography (oct) imaging of the posterior segment, and demonstrate the potential of deep learning (dl) ensemble method that operates in a low data regime to differentiate glaucoma patients from healthy controls. The two groups of subjects were initially categorized based on a range of clinical tests including measurements of intraocular pressure, visual fields, oct derived retinal nerve fiber layer (rnfl) thickness and dilated stereoscopic examination of onh. 227 slo images of 227 subjects (105 glaucoma patients and 122 controls) were used.
View Article and Find Full Text PDF