Evidence that long non-coding RNAs (lncRNAs) participate in DNA repair is accumulating, however, whether they can control DNA repair pathway choice is unknown. Here we show that the small Cajal body-specific RNA 2 (scaRNA2) can promote HR by inhibiting DNA-dependent protein kinase (DNA-PK) and, thereby, NHEJ. By binding to the catalytic subunit of DNA-PK (DNA-PKcs), scaRNA2 weakens its interaction with the Ku70/80 subunits, as well as with the LINP1 lncRNA, thereby preventing catalytic activation of the enzyme.
View Article and Find Full Text PDFN6-methyladenosine (m6A) is the most abundant base modification found in messenger RNAs (mRNAs). The discovery of FTO as the first m6A mRNA demethylase established the concept of reversible RNA modification. Here, we present a comprehensive transcriptome-wide analysis of RNA demethylation and uncover FTO as a potent regulator of nuclear mRNA processing events such as alternative splicing and 3΄ end mRNA processing.
View Article and Find Full Text PDFThe Nuclear Exosome Targeting (NEXT) complex is a key cofactor of the mammalian nuclear exosome in the removal of Promoter Upstream Transcripts (PROMPTs) and potentially aberrant forms of other noncoding RNAs, such as snRNAs. NEXT is composed of three subunits SKIV2L2, ZCCHC8 and RBM7. We have recently identified the NEXT complex in our screen for oligo(U) RNA-binding factors.
View Article and Find Full Text PDFThe mechanisms of gene expression regulation by miRNAs have been extensively studied. However, the regulation of miRNA function and decay has long remained enigmatic. Only recently, 3' uridylation via LIN28A-TUT4/7 has been recognized as an essential component controlling the biogenesis of let-7 miRNAs in stem cells.
View Article and Find Full Text PDFIntegration of exogenous DNA in the unicellular green alga Chlamydomonas reinhardtii is principally carried out by mechanisms involving non-homologous recombination (NHR), rather than homologous recombination (HR). Homologous recombination is, however, the mechanism of choice when it comes to gene targeting. Unfortunately, attempts to establish this method in Chlamydomonas have had limited success.
View Article and Find Full Text PDFRecruitment of appropriate RNA processing factors to the site of transcription is controlled by post-translational modifications of the C-terminal domain (CTD) of RNA polymerase II (RNAP II). Here, we report the solution structure of the Ser5 phosphorylated (pSer5) CTD bound to Nrd1. The structure reveals a direct recognition of pSer5 by Nrd1 that requires the cis conformation of the upstream pSer5-Pro6 peptidyl-prolyl bond of the CTD.
View Article and Find Full Text PDFNon-coding RNA polymerase II transcripts are processed by the poly(A)-independent termination pathway that requires the Nrd1 complex. The Nrd1 complex includes two RNA-binding proteins, the nuclear polyadenylated RNA-binding (Nab) 3 and the nuclear pre-mRNA down-regulation (Nrd) 1 that bind their specific termination elements. Here we report the solution structure of the RNA-recognition motif (RRM) of Nab3 in complex with a UCUU oligonucleotide, representing the Nab3 termination element.
View Article and Find Full Text PDF