Lipid nanoparticle (LNP) formulations are a proven method for the delivery of nucleic acids for gene therapy as exemplified by the worldwide rollout of LNP-based RNAi therapeutics and mRNA vaccines. However, targeting specific tissues or cells is still a major challenge. After LNP administration, LNPs interact with biological fluids (i.
View Article and Find Full Text PDFDespite exciting advances in gene editing, the efficient delivery of genetic tools to extrahepatic tissues remains challenging. This holds particularly true for the skin, which poses a highly restrictive delivery barrier. In this study, we ran a head-to-head comparison between Cas9 mRNA or ribonucleoprotein (RNP)-loaded lipid nanoparticles (LNPs) to deliver gene editing tools into epidermal layers of human skin, aiming for gene editing.
View Article and Find Full Text PDFLipid nanoparticles (LNPs) for delivery of mRNA usually contain ionizable lipid/helper lipid/cholesterol/PEG-lipid in molar ratios of 50:10:38.5:1.5, respectively.
View Article and Find Full Text PDFThe transfection potency of lipid nanoparticle (LNP) mRNA systems is critically dependent on the ionizable cationic lipid component. LNP mRNA systems composed of optimized ionizable lipids often display distinctive mRNA-rich "bleb" structures. Here, it is shown that such structures can also be induced for LNPs containing nominally less active ionizable lipids by formulating them in the presence of high concentrations of pH 4 buffers such as sodium citrate, leading to improved transfection potencies both in vitro and in vivo.
View Article and Find Full Text PDFWhile all the siRNA drugs on the market target the liver, the lungs offer a variety of currently undruggable targets which could potentially be treated with RNA therapeutics. Hence, local, pulmonary delivery of RNA nanoparticles could finally enable delivery beyond the liver. The administration of RNA drugs via dry powder inhalers offers many advantages related to physical, chemical and microbial stability of RNA and nanosuspensions.
View Article and Find Full Text PDFHepatitis B virus (HBV) can rapidly replicate in the hepatocytes after transmission, leading to chronic hepatitis, liver cirrhosis and eventually hepatocellular carcinoma. Interferon-α (IFN-α) is included in the standard treatment for chronic hepatitis B (CHB). However, this therapy causes serious side effects.
View Article and Find Full Text PDFMany medicines are only available in solid dosage forms suitable for adults, and extemporaneous compounding is required to prepare formulations for children. However, this common practice often results in inaccurate dosing and unpleasant taste, reducing the medication adherence. Here, we report the development of a new method to prepare and compound child-friendly oral formulations based on a liposomal multilamellar vesicle (MLV) platform.
View Article and Find Full Text PDFLipid nanoparticles (LNPs) play an important role in mRNA vaccines against COVID-19. In addition, many preclinical and clinical studies, including the siRNA-LNP product, Onpattro®, highlight that LNPs unlock the potential of nucleic acid-based therapies and vaccines. To understand what is key to the success of LNPs, we need to understand the role of the building blocks that constitute them.
View Article and Find Full Text PDFAdvanced-stage prostate cancer remains an incurable disease with poor patient prognosis. There is an unmet clinical need to target androgen receptor (AR) splice variants, which are key drivers of the disease. Some AR splice variants are insensitive to conventional hormonal or androgen deprivation therapy due to loss of the androgen ligand binding domain at the C-terminus and are constitutively active.
View Article and Find Full Text PDFApproved drugs for the treatment of osteoporosis can prevent further bone loss but do not stimulate bone formation. Approaches that improve bone density in metabolic diseases are needed. Therapies that take advantage of the ability of mesenchymal stem cells (MSCs) to differentiate into various osteogenic lineages to treat bone disorders are of particular interest.
View Article and Find Full Text PDFLipid nanoparticles (LNPs) are the leading nonviral technologies for the delivery of exogenous RNA to target cells in vivo. As systemic delivery platforms, these technologies are exemplified by Onpattro, an approved LNP-based RNA interference therapy, administered intravenously and targeted to parenchymal liver cells. The discovery of systemically administered LNP technologies capable of preferential RNA delivery beyond hepatocytes has, however, proven more challenging.
View Article and Find Full Text PDFNanoparticles are a promising solution for delivery of a wide range of medicines and vaccines. Optimizing their design depends on being able to resolve, understand, and predict biophysical and therapeutic properties, as a function of design parameters. While existing tools have made great progress, gaps in understanding remain because of the inability to make detailed measurements of multiple correlated properties.
View Article and Find Full Text PDFHemolytic toxicity caused by primaquine (PQ) is a high-risk condition that hampers the wide use of PQ to treat liver-stage malaria. This study demonstrated that phospholipid-free small unilamellar vesicles (PFSUVs) composed of Tween80 and cholesterol could encapsulate and deliver PQ to the hepatocytes with reduced exposure to the red blood cells (RBCs). Nonionic surfactant (Tween80) and cholesterol-forming SUVs with a mean diameter of 50 nm were fabricated for delivering PQ.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
August 2021
Genome-wide association studies have shown that a gene variant in the Family with sequence similarity 13, member A (FAM13A) is strongly associated with reduced lung function and the appearance of respiratory symptoms in patients with chronic obstructive pulmonary disease (COPD). A key player in smoking-induced tissue injury and airway remodeling is the transforming growth factor-β1 (TGF-β1). To determine the role of FAM13A in TGF-β1 signaling, airway epithelial cells were generated using CRISPR-Cas9, whereas overexpression of FAM13A was achieved using lipid nanoparticles.
View Article and Find Full Text PDFThe increasing number of approved nucleic acid therapeutics demonstrates the potential to treat diseases by targeting their genetic blueprints in vivo. Conventional treatments generally induce therapeutic effects that are transient because they target proteins rather than underlying causes. In contrast, nucleic acid therapeutics can achieve long-lasting or even curative effects via gene inhibition, addition, replacement or editing.
View Article and Find Full Text PDFMost known pathogenic point mutations in humans are C•G to T•A substitutions, which can be directly repaired by adenine base editors (ABEs). In this study, we investigated the efficacy and safety of ABEs in the livers of mice and cynomolgus macaques for the reduction of blood low-density lipoprotein (LDL) levels. Lipid nanoparticle-based delivery of mRNA encoding an ABE and a single-guide RNA targeting PCSK9, a negative regulator of LDL, induced up to 67% editing (on average, 61%) in mice and up to 34% editing (on average, 26%) in macaques.
View Article and Find Full Text PDFHepatocellular carcinoma (HCC) is related to increasing incidence rates and poor clinical outcomes due to lack of efficient treatment options and emerging resistance mechanisms. The aim of the present study is to exploit a non-viral gene therapy enabling the expression of the parvovirus-derived oncotoxic protein NS1 in HCC. This anticancer protein interacts with different cellular kinases mediating a multimodal host-cell death.
View Article and Find Full Text PDFEncapsulation of small molecule drugs in long-circulating lipid nanoparticles (LNPs) can reduce toxic side effects and enhance accumulation at tumor sites. A fundamental problem, however, is the slow release of encapsulated drugs from these liposomal systems at the disease site resulting in limited therapeutic benefit. Methods to trigger release at specific sites are highly warranted.
View Article and Find Full Text PDFRecently, a lipopeptide derived from the hepatitis B virus (HBV) large surface protein has been developed as an HBV entry inhibitor. This lipopeptide, called MyrcludexB (MyrB), selectively binds to the sodium taurocholate cotransporting polypeptide (NTCP) on the basolateral membrane of hepatocytes. Here, the feasibility of coupling therapeutic enzymes to MyrB was investigated for the development of enzyme delivery strategies.
View Article and Find Full Text PDFA drawback of the current mRNA-lipid nanoparticle (LNP) COVID-19 vaccines is that they have to be stored at (ultra)low temperatures. Understanding the root cause of the instability of these vaccines may help to rationally improve mRNA-LNP product stability and thereby ease the temperature conditions for storage. In this review we discuss proposed structures of mRNA-LNPs, factors that impact mRNA-LNP stability and strategies to optimize mRNA-LNP product stability.
View Article and Find Full Text PDFFor more than 30 years, treatment of acute myeloid leukemia (AML) has remained largely unchanged and reliant on chemotherapeutic drug combinations, specifically cytarabine and daunorubicin (the 7 + 3 regimen). One broad spectrum drug, flavopiridol (also known as Alvocidib) has shown significant activity against AML through the inhibition of cyclin-dependent kinases. Flavopiridol is a semisynthetic flavonoid and our research team recently described methods to formulate another flavonoid, quercetin, through the ability of flavonoids to bind divalent metals.
View Article and Find Full Text PDFWe demonstrated that phospholipid-free small unilamellar vesicles (PFSUVs) composed of TWEEN 80 and cholesterol (25/75, mol%) could be fabricated using a staggered herringbone micromixer with precise controlling of their mean size between 54 nm and 147 nm. Increasing the temperature or decreasing the flow rate led to an increase in the resulting particle diameter. In zebrafish embryos, 120-nm PFSUVs showed 3-fold higher macrophage clearance compared to the 60-nm particles, which exhibited prolonged blood circulation.
View Article and Find Full Text PDFBase editors are RNA-programmable deaminases that enable precise single-base conversions in genomic DNA. However, off-target activity is a concern in the potential use of base editors to treat genetic diseases. Here, we report unbiased analyses of transcriptome-wide and genome-wide off-target modifications effected by cytidine base editors in the liver of mice with phenylketonuria.
View Article and Find Full Text PDFCellular delivery of DNA vectors for the expression of therapeutic proteins is a promising approach to treat monogenic disorders or cancer. Significant efforts in a preclinical and clinical setting have been made to develop potent nonviral gene delivery systems based on lipoplexes composed of permanently cationic lipids. However, transfection efficiency and tolerability of such systems are in most cases not satisfactory.
View Article and Find Full Text PDF