Two light-emitting polyphenylene dendrimers with both hole and electron transporting moieties were synthesized and characterized. Both molecules exhibited pure blue emission solely from the pyrene core and efficient surface-to-core energy transfers when characterized in a nonpolar environment. In particular, the carbazole- and oxadiazole-functionalized dendrimer () manifested a pure blue emission from the pyrene core without showing intramolecular charge transfer (ICT) in environments with increasing polarity.
View Article and Find Full Text PDFA donor-acceptor-donor (D-A-D) type naphthalene-diimide (NDI-H) chromophore exhibits highly cooperative J-aggregation leading to nanotubular self-assembly and gelation in -decane, as demonstrated by UV/Vis, FT-IR, photoluminescence and microscopy studies. Analysis of temperature-dependent UV/Vis spectra using the nucleation-elongation model and FT-IR data reveals the molecular origin of the cooperative nature of the self-assembly. The supramolecular polymerization is initiated by H-bonding up to a degree of polymerization ∼20-25, which in a subsequent elongation step promotes J-aggregation in orthogonal direction leading to possibly a sheet-like structure that eventually produces nanotubes.
View Article and Find Full Text PDFThe exciton dynamics in pristine films of two structurally related low-bandgap diketopyrrolopyrrole (DPP)-based donor-acceptor copolymers and the photophysical processes in bulk heterojunction solar cells using DPP copolymer:PC71 BM blends are investigated by broadband transient absorption (TA) pump-probe experiments covering the vis-near-infrared spectral and fs-μs dynamic range. The experiments reveal surprisingly short exciton lifetimes in the pristine poly-mer films in conjunction with fast triplet state formation. An in-depth analysis of the TA data by multivariate curve resolution analysis shows that in blends with fullerene as acceptor ultrafast exciton dissociation creates charge carriers, which then rapidly recombine on the sub-ns timescale.
View Article and Find Full Text PDFThe effect of donor-acceptor phase separation, controlled by the donor-acceptor mixing ratio, on the charge generation and recombination dynamics in pBTTT-C14:PC70 BM bulk heterojunction photovoltaic blends is presented. Transient absorption (TA) spectroscopy spanning the dynamic range from pico- to microseconds in the visible and near-infrared spectral regions reveals that in a 1:1 blend exciton dissociation is ultrafast; however, charges cannot entirely escape their mutual Coulomb attraction and thus predominantly recombine geminately on a sub-ns timescale. In contrast, a polymer:fullerene mixing ratio of 1:4 facilitates the formation of spatially separated, that is free, charges and reduces substantially the fraction of geminate charge recombination, in turn leading to much more efficient photovoltaic devices.
View Article and Find Full Text PDFHerein we reveal a straightforward supramolecular design for the H-bonding driven J-aggregation of an amine-substituted cNDI in aliphatic hydrocarbons. Transient absorption spectroscopy reveals sub-ps intramolecular electron transfer in isolated NDI molecules in a THF solution followed by a fast recombination process, while a remarkable extension of the excited state lifetime by more than one order of magnitude occurred in methylcyclohexane likely owing to an increased charge-separation as a result of better delocalization of the charge-separated states in J-aggregates. We also describe unique solvent-effects on the macroscopic structure and morphology.
View Article and Find Full Text PDF