Publications by authors named "Dominik Steindorf"

Human death receptors control apoptotic events during cell differentiation, cell homeostasis and the elimination of damaged or infected cells. Receptor activation involves ligand-induced structural reorganizations of preformed receptor trimers. Here we show that the death receptor transmembrane domains only have a weak intrinsic tendency to homo-oligomerize within a membrane, and thus these domains potentially do not significantly contribute to receptor trimerization.

View Article and Find Full Text PDF

Single pass transmembrane proteins make up almost half of the whole transmembrane proteome. Contacts between such bitopic transmembrane proteins are common, and oligomerization of their single transmembrane helix is involved in triggering and regulation of signal transduction across cell membranes. In several recent analyses the distribution of amino acids at helix-helix contact sides has been analyzed, and e.

View Article and Find Full Text PDF

In recent years several systems have been developed to study interactions of TM domains within the inner membrane of the Gram-negative bacterium Escherichia coli. Mostly, a transmembrane domain of interest is fused to a soluble DNA-binding domain, which dimerizes in E. coli cytoplasm after interactions of the transmembrane domains.

View Article and Find Full Text PDF

The skeleton of siliceous sponges consists of amorphous biogenous silica (biosilica). Biosilica formation is driven enzymatically by means of silicatein(s). During this unique process of enzymatic polycondensation, skeletal elements (spicules) that enfold a central proteinaceous structure (axial filament), mainly comprising silicatein, are formed.

View Article and Find Full Text PDF