Publications by authors named "Dominik Schrempf"

The timing of early cellular evolution, from the divergence of Archaea and Bacteria to the origin of eukaryotes, is poorly constrained. The ATP synthase complex is thought to have originated prior to the Last Universal Common Ancestor (LUCA) and analyses of ATP synthase genes, together with ribosomes, have played a key role in inferring and rooting the tree of life. We reconstruct the evolutionary history of ATP synthases using an expanded taxon sampling set and develop a phylogenetic cross-bracing approach, constraining equivalent speciation nodes to be contemporaneous, based on the phylogenetic imprint of endosymbioses and ancient gene duplications.

View Article and Find Full Text PDF

Accurate phylogenies are fundamental to our understanding of the pattern and process of evolution. Yet, phylogenies at deep evolutionary timescales, with correspondingly long branches, have been fraught with controversy resulting from conflicting estimates from models with varying complexity and goodness of fit. Analyses of historical as well as current empirical datasets, such as alignments including Microsporidia, Nematoda, or Platyhelminthes, have demonstrated that inadequate modeling of across-site compositional heterogeneity, which is the result of biochemical constraints that lead to varying patterns of accepted amino acids along sequences, can lead to erroneous topologies that are strongly supported.

View Article and Find Full Text PDF

The origin of plants and their colonization of land fundamentally transformed the terrestrial environment. Here we elucidate the basis of this formative episode in Earth history through patterns of lineage, gene and genome evolution. We use new fossil calibrations, a relative clade age calibration (informed by horizontal gene transfer) and new phylogenomic methods for mapping gene family origins.

View Article and Find Full Text PDF

Many organisms are able to incorporate exogenous DNA into their genomes. This process, called lateral gene transfer (LGT), has the potential to benefit the recipient organism by providing useful coding sequences, such as antibiotic resistance genes or enzymes which expand the organism's metabolic niche. For evolutionary biologists, LGTs have often been considered a nuisance because they complicate the reconstruction of the underlying species tree that many analyses aim to recover.

View Article and Find Full Text PDF

Common molecular phylogenetic characteristics such as long branches and compositional heterogeneity can be problematic for phylogenetic reconstruction when using amino acid data. Recoding alignments to reduced alphabets before phylogenetic analysis has often been used both to explore and potentially decrease the effect of such problems. We tested the effectiveness of this strategy on topological accuracy using simulated data on four-taxon trees.

View Article and Find Full Text PDF

Tumors often harbor orders of magnitude more mutations than healthy tissues. The increased number of mutations may be due to an elevated mutation rate or frequent cell death and correspondingly rapid cell turnover, or a combination of the two. It is difficult to disentangle these two mechanisms based on widely available bulk sequencing data, where sequences from individual cells are intermixed and, thus, the cell lineage tree of the tumor cannot be resolved.

View Article and Find Full Text PDF

Dating the tree of life is central to understanding the evolution of life on Earth. Molecular clocks calibrated with fossils represent the state of the art for inferring the ages of major groups. Yet, other information on the timing of species diversification can be used to date the tree of life.

View Article and Find Full Text PDF

There is an expectation that analyses of molecular sequences might be able to distinguish between alternative hypotheses for ancient relationships, but the phylogenetic methods used and types of data analyzed are of critical importance in any attempt to recover historical signal. Here, we discuss some common issues that can influence the topology of trees obtained when using overly simple models to analyze molecular data that often display complicated patterns of sequence heterogeneity. To illustrate our discussion, we have used three examples of inferred relationships which have changed radically as models and methods of analysis have improved.

View Article and Find Full Text PDF

Biochemical demands constrain the range of amino acids acceptable at specific sites resulting in across-site compositional heterogeneity of the amino acid replacement process. Phylogenetic models that disregard this heterogeneity are prone to systematic errors, which can lead to severe long-branch attraction artifacts. State-of-the-art models accounting for across-site compositional heterogeneity include the CAT model, which is computationally expensive, and empirical distribution mixture models estimated via maximum likelihood (C10-C60 models).

View Article and Find Full Text PDF

IQ-TREE (http://www.iqtree.org, last accessed February 6, 2020) is a user-friendly and widely used software package for phylogenetic inference using maximum likelihood.

View Article and Find Full Text PDF

Recent studies suggest that closely related species can accumulate substantial genetic and phenotypic differences despite ongoing gene flow, thus challenging traditional ideas regarding the genetics of speciation. Baboons (genus ) are Old World monkeys consisting of six readily distinguishable species. Baboon species hybridize in the wild, and prior data imply a complex history of differentiation and introgression.

View Article and Find Full Text PDF

Molecular phylogenetics has neglected polymorphisms within present and ancestral populations for a long time. Recently, multispecies coalescent based methods have increased in popularity, however, their application is limited to a small number of species and individuals. We introduced a polymorphism-aware phylogenetic model (PoMo), which overcomes this limitation and scales well with the increasing amount of sequence data whereas accounting for present and ancestral polymorphisms.

View Article and Find Full Text PDF

A central aim of population genetics is the inference of the evolutionary history of a population. To this end, the underlying process can be represented by a model of the evolution of allele frequencies parametrized by e.g.

View Article and Find Full Text PDF

Recently, Burden and Tang (2016) provided an analytical expression for the stationary distribution of the multivariate neutral Wright-Fisher model with low mutation rates. In this paper we present a simple, alternative derivation that illustrates the approximation. Our proof is based on the discrete multivariate boundary mutation model which has three key ingredients.

View Article and Find Full Text PDF

We present a reversible Polymorphism-Aware Phylogenetic Model (revPoMo) for species tree estimation from genome-wide data. revPoMo enables the reconstruction of large scale species trees for many within-species samples. It expands the alphabet of DNA substitution models to include polymorphic states, thereby, naturally accounting for incomplete lineage sorting.

View Article and Find Full Text PDF

Incomplete lineage sorting can cause incongruencies of the overall species-level phylogenetic tree with the phylogenetic trees for individual genes or genomic segments. If these incongruencies are not accounted for, it is possible to incur several biases in species tree estimation. Here, we present a simple maximum likelihood approach that accounts for ancestral variation and incomplete lineage sorting.

View Article and Find Full Text PDF