Graphene oxide (GO) has recently been highlighted as a promising multipurpose two-dimensional material. However, free-standing graphene oxide films suffer from poor strength and flexibility, which limits scaling-up of production and lifetime structural robustness in applications. Inspired by the relationship between the organic and inorganic components of the hierarchical structure of nacre found in mollusk shells, we have fabricated self-assembled, layered graphene-based composite films.
View Article and Find Full Text PDFNature is based on complex self-assembling systems that span from the nanoscale to the macroscale. We have already begun to design biomimetic systems with properties that have not evolved in nature, based on designed molecular interactions and regulation of biological systems. Synthetic biology is based on the principle of modularity, repurposing diverse building modules to design new types of molecular and cellular assemblies.
View Article and Find Full Text PDFThe impressive mechanical properties of natural composites, such as nacre, arise from their multiscale hierarchical structures, which span from nano- to macroscale and lead to effective energy dissipation. While some synthetic bioinspired materials have achieved the toughness of natural nacre, current production methods are complex and typically involve toxic chemicals, extreme temperatures, and/or high pressures. Here, the exclusive use of bacteria to produce nacre-inspired layered calcium carbonate-polyglutamate composite materials that reach and exceed the toughness of natural nacre, while additionally exhibiting high extensibility and maintaining high stiffness, is introduced.
View Article and Find Full Text PDFBiofilms can grow on virtually any surface available, with impacts ranging from endangering the lives of patients to degrading unwanted water contaminants. Biofilm research is challenging due to the high degree of biofilm heterogeneity. A method for the production of standardized, reproducible, and patterned biofilm-inspired materials could be a boon for biofilm research and allow for completely new engineering applications.
View Article and Find Full Text PDFSustainable and personally tailored materials production is an emerging challenge to society. Living organisms can produce and pattern an extraordinarily wide range of different molecules in a sustainable way. These natural systems offer an abundant source of inspiration for the development of new environmentally friendly materials production techniques.
View Article and Find Full Text PDFThe DctSR two-component system of Bacillus subtilis controls the expression of the aerobic C4-dicarboxylate transporter DctA. Deletion of DctA leads to an increased dctA expression. The inactivation of DctB, an extracellular binding protein, is known to inhibit the expression of dctA.
View Article and Find Full Text PDF