Publications by authors named "Dominik Sacha"

While many VA workflows make use of machine-learned models to support analytical tasks, VA workflows have become increasingly important in understanding and improving Machine Learning (ML) processes. In this paper, we propose an ontology (VIS4ML) for a subarea of VA, namely "VA-assisted ML". The purpose of VIS4ML is to describe and understand existing VA workflows used in ML as well as to detect gaps in ML processes and the potential of introducing advanced VA techniques to such processes.

View Article and Find Full Text PDF

Clustering is a core building block for data analysis, aiming to extract otherwise hidden structures and relations from raw datasets, such as particular groups that can be effectively related, compared, and interpreted. A plethora of visual-interactive cluster analysis techniques has been proposed to date, however, arriving at useful clusterings often requires several rounds of user interactions to fine-tune the data preprocessing and algorithms. We present a multi-stage Visual Analytics (VA) approach for iterative cluster refinement together with an implementation (SOMFlow) that uses Self-Organizing Maps (SOM) to analyze time series data.

View Article and Find Full Text PDF

Dimensionality Reduction (DR) is a core building block in visualizing multidimensional data. For DR techniques to be useful in exploratory data analysis, they need to be adapted to human needs and domain-specific problems, ideally, interactively, and on-the-fly. Many visual analytics systems have already demonstrated the benefits of tightly integrating DR with interactive visualizations.

View Article and Find Full Text PDF

Visual analytics supports humans in generating knowledge from large and often complex datasets. Evidence is collected, collated and cross-linked with our existing knowledge. In the process, a myriad of analytical and visualisation techniques are employed to generate a visual representation of the data.

View Article and Find Full Text PDF

Visual analytics enables us to analyze huge information spaces in order to support complex decision making and data exploration. Humans play a central role in generating knowledge from the snippets of evidence emerging from visual data analysis. Although prior research provides frameworks that generalize this process, their scope is often narrowly focused so they do not encompass different perspectives at different levels.

View Article and Find Full Text PDF