Int J Comput Assist Radiol Surg
June 2024
Purpose: Efficient and precise surgical skills are essential in ensuring positive patient outcomes. By continuously providing real-time, data driven, and objective evaluation of surgical performance, automated skill assessment has the potential to greatly improve surgical skill training. Whereas machine learning-based surgical skill assessment is gaining traction for minimally invasive techniques, this cannot be said for open surgery skills.
View Article and Find Full Text PDFBatch Normalization's (BN) unique property of depending on other samples in a batch is known to cause problems in several tasks, including sequence modeling. Yet, BN-related issues are hardly studied for long video understanding, despite the ubiquitous use of BN in CNNs (Convolutional Neural Networks) for feature extraction. Especially in surgical workflow analysis, where the lack of pretrained feature extractors has led to complex, multi-stage training pipelines, limited awareness of BN issues may have hidden the benefits of training CNNs and temporal models end to end.
View Article and Find Full Text PDFInt J Comput Assist Radiol Surg
June 2024
Purpose: In surgical computer vision applications, data privacy and expert annotation challenges impede the acquisition of labeled training data. Unpaired image-to-image translation techniques have been explored to automatically generate annotated datasets by translating synthetic images into a realistic domain. The preservation of structure and semantic consistency, i.
View Article and Find Full Text PDFInt J Comput Assist Radiol Surg
June 2019
Purpose: For many applications in the field of computer-assisted surgery, such as providing the position of a tumor, specifying the most probable tool required next by the surgeon or determining the remaining duration of surgery, methods for surgical workflow analysis are a prerequisite. Often machine learning-based approaches serve as basis for analyzing the surgical workflow. In general, machine learning algorithms, such as convolutional neural networks (CNN), require large amounts of labeled data.
View Article and Find Full Text PDF