Finding effective antibiotics against multi-resistant strains of bacteria has been a challenging race. Linker-Evolved-Group-Optimized-Lipophosphonoxins (LEGO-LPPOs) are small modular synthetic antibacterial compounds targeting the cytoplasmic membrane. Here we focused on understanding the reasons for the variable efficacy of selected LEGO-LPPOs (LEGO-1, LEGO-2, LEGO-3, and LEGO-4) differing in hydrophobic and linker module structure and length.
View Article and Find Full Text PDFL. (AE) has a rich tradition of use in wound healing improvement across various cultures worldwide. In previous studies, we revealed that L.
View Article and Find Full Text PDFLinker-Evolved-Group-Optimized-Lipophosphonoxins (LEGO-LPPO) are small synthetic modular peptidomimetics with promising antimicrobial activity. The LEGO-LPPO mechanism of antibacterial action has been determined to be the depolarization and disruption of bacterial membranes. Their modular nature is advantageous for fine tuning their biological properties.
View Article and Find Full Text PDFThe alarmone (p)ppGpp serves as the signalling molecule for the bacterial universal stringent response and plays a crucial role in bacterial virulence, persistence, and stress adaptation. Consequently, there is a significant focus on developing new drugs that target and modulate the levels of (p)ppGpp as a potential strategy for controlling bacterial infections. However, despite the availability of various methods for detecting (p)ppGpp, a simple and straightforward detection method is needed.
View Article and Find Full Text PDFAllosteric regulation of inosine 5'-monophosphate dehydrogenase (IMPDH), an essential enzyme of purine metabolism, contributes to the homeostasis of adenine and guanine nucleotides. However, the precise molecular mechanism of IMPDH regulation in bacteria remains unclear. Using biochemical and cryo-EM approaches, we reveal the intricate molecular mechanism of the IMPDH allosteric regulation in mycobacteria.
View Article and Find Full Text PDFInhibition of hypoxanthine-guanine-xanthine phosphoribosyltransferase activity decreases the pool of 6-oxo and 6-amino purine nucleoside monophosphates required for DNA and RNA synthesis, resulting in a reduction in cell growth. Therefore, inhibitors of this enzyme have potential to control infections, caused by and , , , and . Five compounds synthesized here that contain a purine base covalently linked by a prolinol group to one or two phosphonate groups have values ranging from 3 nM to >10 μM, depending on the structure of the inhibitor and the biological origin of the enzyme.
View Article and Find Full Text PDFBurn injuries are a significant global health concern, with more than 11 million people requiring medical intervention each year and approximately 180,000 deaths annually. Despite progress in health and social care, burn injuries continue to result in socioeconomic burdens for victims and their families. The management of severe burn injuries involves preventing and treating burn shock and promoting skin repair through a two-step procedure of covering and closing the wound.
View Article and Find Full Text PDFIn the past few decades, society has faced rapid development and spreading of antimicrobial resistance due to antibiotic misuse and overuse and the immense adaptability of bacteria. Difficulties in obtaining effective antimicrobial molecules from natural sources challenged scientists to develop synthetic molecules with antimicrobial effect. We developed modular molecules named LEGO-Lipophosphonoxins (LEGO-LPPO) capable of inducing cytoplasmic membrane perforation.
View Article and Find Full Text PDFLipophosphonoxins (LPPOs) represent a new group of membrane-targeting antibiotics. Three generations of LPPOs have been described: First-generation LPPOs, second-generation LPPOs, and LEGO-LPPOs. All three generations have a similar mode of bactericidal action of targeting and disrupting the bacterial cytoplasmic membrane of prokaryotic cells, with limited effect on eukaryotic cells.
View Article and Find Full Text PDFThe alarming rise of bacterial antibiotic resistance requires the development of new compounds. Such compounds, lipophosphonoxins (LPPOs), were previously reported to be active against numerous bacterial species, but serum albumins abolished their activity. Here we describe the synthesis and evaluation of novel antibacterial compounds termed LEGO-LPPOs, loosely based on LPPOs, consisting of a central linker module with two attached connector modules on either side.
View Article and Find Full Text PDFMycobacteria express enzymes from both the de novo and purine-salvage pathways. However, the regulation of these processes and the roles of individual metabolic enzymes have not been sufficiently detailed. Both Mycobacterium tuberculosis (Mtb) and Mycobacterium smegmatis (Msm) possess three guaB genes, but information is only available on guaB2, which encodes an essential inosine 5'-monophosphate dehydrogenase (IMPDH) involved in de novo purine biosynthesis.
View Article and Find Full Text PDF(1) Background: The root canal system has complex anatomical and histological features that make it impossible to completely remove all bacteria by mechanical means only; they must be supplemented with disinfectant irrigation. Current disinfectants are unable to eliminate certain microorganisms that persist in the root canal, resulting in treatment failure. At the Institute of Organic Chemistry and Biochemistry, Prague, novel substances with the bactericidal effect, termed lipophosphonoxins (LPPOs), have been discovered.
View Article and Find Full Text PDFActive wound dressings are attracting extensive attention in soft tissue repair and regeneration, including bacteria-infected skin wound healing. As the wide use of antibiotics leads to drug resistance we present here a new concept of wound dressings based on the polycaprolactone nanofiber scaffold (NANO) releasing second generation lipophosphonoxin (LPPO) as antibacterial agent. Firstly, we demonstrated in vitro that LPPO released from NANO exerted antibacterial activity while not impairing proliferation/differentiation of fibroblasts and keratinocytes.
View Article and Find Full Text PDFWhile alarmone nucleotides guanosine-3',5'-bisdiphosphate (ppGpp) and guanosine-5'-triphosphate-3'-diphosphate (pppGpp) are archetypical bacterial second messengers, their adenosine analogues ppApp (adenosine-3',5'-bisdiphosphate) and pppApp (adenosine-5'-triphosphate-3'-diphosphate) are toxic effectors that abrogate bacterial growth. The alarmones are both synthesized and degraded by the members of the RelA-SpoT Homologue (RSH) enzyme family. Because of the chemical and enzymatic liability of (p)ppGpp and (p)ppApp, these alarmones are prone to degradation during structural biology experiments.
View Article and Find Full Text PDFRelA-SpoT Homolog (RSH) enzymes control bacterial physiology through synthesis and degradation of the nucleotide alarmone (p)ppGpp. We recently discovered multiple families of small alarmone synthetase (SAS) RSH acting as toxins of toxin-antitoxin (TA) modules, with the FaRel subfamily of toxSAS abrogating bacterial growth by producing an analog of (p)ppGpp, (pp)pApp. Here we probe the mechanism of growth arrest used by four experimentally unexplored subfamilies of toxSAS: FaRel2, PhRel, PhRel2, and CapRel.
View Article and Find Full Text PDFLipophosphonoxins (LPPOs) are small modular synthetic antibacterial compounds that target the cytoplasmic membrane. First-generation LPPOs (LPPO I) exhibit an antimicrobial activity against Gram-positive bacteria; however they do not exhibit any activity against Gram-negatives. Second-generation LPPOs (LPPO II) also exhibit broadened activity against Gram-negatives.
View Article and Find Full Text PDF(Hp) is a human pathogen that lives in the gastric mucosa of approximately 50% of the world's population causing gastritis, peptic ulcers, and gastric cancer. An increase in resistance to current drugs has sparked the search for new Hp drug targets and therapeutics. One target is the disruption of nucleic acid production, which can be achieved by impeding the synthesis of 6-oxopurine nucleoside monophosphates, the precursors of DNA and RNA.
View Article and Find Full Text PDFThe stringent response is characterized by the synthesis of the messenger molecules pppGpp, ppGpp or pGpp (here collectively designated (pp)pGpp). The phenotypic consequences resulting from (pp)pGpp accumulation vary among species and can be mediated by different underlying mechanisms. Most genome-wide analyses have been performed under stress conditions, which often mask the immediate effects of (pp)pGpp-mediated regulatory circuits.
View Article and Find Full Text PDFUnder stressful conditions, bacterial RelA-SpoT Homolog (RSH) enzymes synthesize the alarmone (p)ppGpp, a nucleotide second messenger. (p)ppGpp rewires bacterial transcription and metabolism to cope with stress, and, at high concentrations, inhibits the process of protein synthesis and bacterial growth to save and redirect resources until conditions improve. Single-domain small alarmone synthetases (SASs) are RSH family members that contain the (p)ppGpp synthesis (SYNTH) domain, but lack the hydrolysis (HD) domain and regulatory C-terminal domains of the long RSHs such as Rel, RelA, and SpoT.
View Article and Find Full Text PDFSuccessful surgeries involving orthopedic implants depend on the avoidance of biofilm development on the implant surface during the early postoperative period. Here, we investigate the potential of novel antibacterial compounds-second-generation lipophosphonoxins (LPPOs II)-as additives to surgical bone cements. We demonstrate (i) excellent thermostability of LPPOs II, which is essential to withstand elevated temperatures during exothermic cement polymerization; (ii) unchanged tensile strength and elongation at the break properties of the composite cements containing LPPOs II compared to cements without additives; (iii) convenient elution kinetics on the order of days; and (iv) the strong antibiofilm activity of the LPPO II-loaded cements even against bacteria resistant to the medicinally utilized antibiotic, gentamicin.
View Article and Find Full Text PDFNucleotides, nucleosides and their derivatives are present in all cells at varying concentrations that change with the nutritional, and energetic status of the cell. Precise measurement of the concentrations of these molecules is instrumental for understanding their regulatory effects. Such measurement is challenging due to the inherent instability of these molecules and, despite many decades of research, the reported values differ widely.
View Article and Find Full Text PDFTherapeutic treatment of tuberculosis (TB) is becoming increasingly problematic due to the emergence of drug resistant Mycobacterium tuberculosis (Mt). Thus, new targets for anti-TB drug discovery need to be identified to combat and eradicate this disease. One such target is hypoxanthine-guanine phosphoribosyltransferase (HGPRT) which synthesises the 6-oxopurine nucleoside monophosphates essential for DNA/RNA production.
View Article and Find Full Text PDFThe alarmone (p)ppGpp plays pivotal roles in basic bacterial stress responses by increasing tolerance of various nutritional limitations and chemical insults, including antibiotics. Despite intensive studies since (p)ppGpp was discovered over 4 decades ago, (p)ppGpp binding proteins have not been systematically identified in We applied DRaCALA (ifferential dial apillary ction of igand ssay) to identify (p)ppGpp-protein interactions. We discovered 12 new (p)ppGpp targets in that, based on their physiological functions, could be classified into four major groups, involved in (i) purine nucleotide homeostasis (YgdH), (ii) ribosome biogenesis and translation (RsgA, Era, HflX, and LepA), (iii) maturation of dehydrogenases (HypB), and (iv) metabolism of (p)ppGpp (MutT, NudG, TrmE, NadR, PhoA, and UshA).
View Article and Find Full Text PDFPlasmodium falciparum (Pf) and Plasmodium vivax (Pv) are the foremost causative agents of malaria. Due to the development of resistance to current antimalarial medications, new drugs for this parasitic disease need to be discovered. The activity of hypoxanthine-guanine-[xanthine]-phosphoribosyltransferase, HG[X]PRT, is reported to be essential for the growth of both of these parasites, making it an excellent target for antimalarial drug discovery.
View Article and Find Full Text PDF