Plutonium (Pu) has been used as a mid-twentieth century time-marker in various geological archives as a result of atmospheric nuclear tests mainly conducted in 1950s. Advancement of analytical techniques allows us to measure Pu and Pu more accurately and can thereby reconstruct the Pacific Pu signal that originated from the former Pacific Proving Grounds (PPG) in the Marshall Islands. Here, we propose a novel method that couples annual banded reef building corals and nearshore anoxic marine sediments to provide a marker to precisely determine the start of the nuclear era which is known as a part of the Anthropocene.
View Article and Find Full Text PDFEarth is constantly bombarded with extraterrestrial dust containing invaluable information about extraterrestrial processes, such as structure formation by stellar explosions or nucleosynthesis, which could be traced back by long-lived radionuclides. Here, we report the very first detection of a recent ^{60}Fe influx onto Earth by analyzing 500 kg of snow from Antarctica by accelerator mass spectrometry. By the measurement of the cosmogenically produced radionuclide ^{53}Mn, an atomic ratio of ^{60}Fe/^{53}Mn=0.
View Article and Find Full Text PDFThe Pu/Pu atom ratio is a very effective tool for the identification of the origin of plutonium (Pu) in the soil environment. We examine a dataset of Pu/Pu atom ratios determined from surface and core soils at 240 sites across China. The data were compiled from 18 separate literature sources from the last 20 years.
View Article and Find Full Text PDFIn the frame of studies on the safe disposal of nuclear waste, there is a great interest for understanding the migration behavior of Tc. Tc originating from nuclear energy production and global fallout shows environmental levels down to 10 atoms/g of soil (∼2 fg/g). Extremely low concentrations are also expected in groundwater after diffusion of Tc through the bentonite constituting the technical barrier for nuclear waste disposal.
View Article and Find Full Text PDFA hitherto unknown phase of sodium titanate, NaTi(3)O(6)(OH)·2H(2)O, was identified as the intermediate species in the synthesis of TiO(2) nanorods. This new phase, prepared as nanorods, was investigated by electron diffraction, X-ray powder diffraction, thermogravimetric analysis and high-resolution transmission electron microscopy. The structure was determined ab initio using electron diffraction data collected by the recently developed automated diffraction tomography technique.
View Article and Find Full Text PDFReaction pathways to SnO(2) nanomaterials through the hydrolysis of hydrated tin tetrachloride precursors were investigated. The products were prepared solvothermally starting from hydrated tin tetrachloride and various (e.g.
View Article and Find Full Text PDF