For decades, frustrated quantum magnets have been a seed for scientific progress and innovation in condensed matter. As much as the numerical tools for low-dimensional quantum magnetism have thrived and improved in recent years due to breakthroughs inspired by quantum information and quantum computation, higher-dimensional quantum magnetism can be considered as the final frontier, where strong quantum entanglement, multiple ordering channels, and manifold ways of paramagnetism culminate. At the same time, efforts in crystal synthesis have induced a significant increase in the number of tangible frustrated magnets which are generically three-dimensional in nature, creating an urgent need for quantitative theoretical modeling.
View Article and Find Full Text PDFQuantum spin liquids provide paradigmatic examples of highly entangled quantum states of matter. Frustration is the key mechanism to favor spin liquids over more conventional magnetically ordered states. Here we propose to engineer frustration by exploiting the coupling of quantum magnets to the quantized light of an optical cavity.
View Article and Find Full Text PDFRecently, the twist angle between adjacent sheets of stacked van der Waals materials emerged as a new knob to engineer correlated states of matter in two-dimensional heterostructures in a controlled manner, giving rise to emergent phenomena such as superconductivity or correlated insulating states. Here, we use an ab initio based approach to characterize the electronic properties of twisted bilayer MoS. We report that, in marked contrast to twisted bilayer graphene, slightly hole-doped MoS realizes a strongly asymmetric p-p Hubbard model on the honeycomb lattice, with two almost entirely dispersionless bands emerging due to destructive interference.
View Article and Find Full Text PDF