Organic photovoltaic devices operate by absorbing light and generating current. These two processes are governed by the optical and transport properties of the organic semiconductor. Despite their common microscopic origin-the electronic structure-disclosing their dynamical interplay is far from trivial.
View Article and Find Full Text PDFGold surfaces host special electronic states that have been understood as a prototype of Shockley surface states. These surface states are commonly employed to benchmark the capability of angle-resolved photoemission spectroscopy (ARPES) and scanning tunnelling spectroscopy. Here we show that these Shockley surface states can be reinterpreted as topologically derived surface states (TDSSs) of a topological insulator (TI), a recently discovered quantum state.
View Article and Find Full Text PDFWe present a rational design approach to customize the spin texture of surface states of a topological insulator. This approach relies on the extreme multifunctionality of organic molecules that are used to functionalize the surface of the prototypical topological insulator (TI) Bi2Se3. For the rational design we use theoretical calculations to guide the choice and chemical synthesis of appropriate molecules that customize the spin texture of Bi2Se3.
View Article and Find Full Text PDF