TAM receptors (TYRO3, AXL, and MERTK) comprise a family of homologous receptor tyrosine kinases (RTK) that are expressed across a range of liquid and solid tumors where they contribute to both oncogenic signaling to promote tumor proliferation and survival, as well as expressed on myeloid and immune cells where they function to suppress host anti-tumor immunity. In recent years, several strategies have been employed to inhibit TAM kinases, most notably small molecule tyrosine kinase inhibitors and inhibitory neutralizing monoclonal antibodies (mAbs) that block receptor dimerization. Targeted protein degraders (TPD) use the ubiquitin proteasome pathway to redirect E3 ubiquitin ligase activity and target specific proteins for degradation.
View Article and Find Full Text PDFProteolysis targeting chimeras (PROTACs) are bifunctional molecules that recruit an E3 ligase to a target protein to facilitate ubiquitination and subsequent degradation of that protein. While the field of targeted degraders is still relatively young, the potential for this modality to become a differentiated and therapeutic reality is strong, such that both academic and pharmaceutical institutions are now entering this interesting area of research. In this article, we describe a broadly applicable process for identifying degrader hits based on the serine/threonine kinase TANK-binding kinase 1 (TBK1) and have generalized the key structural elements associated with degradation activities.
View Article and Find Full Text PDFMyeloid cell leukemia-1 (Mcl-1) is an antiapoptotic member of the Bcl-2 family of proteins that is overexpressed and amplified in many cancers. Overexpression of Mcl-1 allows cancer cells to evade apoptosis and contributes to the resistance of cancer cells to be effectively treated with various chemotherapies. From an NMR-based screen of a large fragment library, several distinct chemical scaffolds that bind to Mcl-1 were discovered.
View Article and Find Full Text PDFAberrant activation of the RhoA small GTPase has been implicated in cancer and other human diseases. Therefore, inhibitors of RhoA may have important therapeutic value. However, similar to the Ras small GTPases, RhoA itself is not considered a tractable target and is currently considered to be "undruggable.
View Article and Find Full Text PDFMyeloid cell leukemia 1 (Mcl-1), a member of the Bcl-2 family of proteins, is overexpressed and amplified in various cancers and promotes the aberrant survival of tumor cells that otherwise would undergo apoptosis. Here we describe the discovery of potent and selective Mcl-1 inhibitors using fragment-based methods and structure-based design. NMR-based screening of a large fragment library identified two chemically distinct hit series that bind to different sites on Mcl-1.
View Article and Find Full Text PDFEvidence is emerging that the closely related ROCK1 and ROCK2 serine/threonine kinases support the invasive and metastatic growth of a spectrum of human cancer types. Therefore, inhibitors of ROCK are under preclinical development. However, a key step in their development involves the identification of genetic biomarkers that will predict ROCK inhibitor antitumor activity.
View Article and Find Full Text PDFPrevious studies described functional roles for Rho GDP dissociation inhibitor 2 (RhoGDI2) in bladder, gastric and breast cancers. However, only limited expression and no functional analyses have been done for RhoGDI2 in ovarian cancer. We determined RhoGDI2 protein expression and function in ovarian cancer.
View Article and Find Full Text PDFThere is now considerable and increasing evidence for a causal role for aberrant activity of the Ras superfamily of small GTPases in human cancers. These GTPases function as GDP-GTP-regulated binary switches that control many fundamental cellular processes. A common mechanism of GTPase deregulation in cancer is the deregulated expression and/or activity of their regulatory proteins, guanine nucleotide exchange factors (GEFs) that promote formation of the active GTP-bound state and GTPase-activating proteins (GAPs) that return the GTPase to its GDP-bound inactive state.
View Article and Find Full Text PDFOur recent studies established essential and distinct roles for RalA and RalB small GTPase activation in K-Ras mutant pancreatic ductal adenocarcinoma (PDAC) cell line tumorigencity, invasion, and metastasis. However, the mechanism of Ral GTPase activation in PDAC has not been determined. There are four highly related mammalian RalGEFs (RalGDS, Rgl1, Rgl2, and Rgl3) that can serve as Ras effectors.
View Article and Find Full Text PDFA thiol peroxidase (Tpx) from Mycobacterium tuberculosis was functionally analyzed. The enzyme shows NADPH-linked peroxidase activity using a thioredoxin-thioredoxin reductase system as electron donor, and anti-oxidant activity in a thiol-dependent metal-catalyzed oxidation system. It reduces H2O2, t-butyl hydroperoxide, and cumene hydroperoxide, and is inhibited by sulfhydryl reagents.
View Article and Find Full Text PDFIsoform diversity within the protein kinase A (PKA) family is achieved by catalytic (C) subunits binding to different isoforms of regulatory subunit homodimers (R2). In a previous small-angle X-ray scattering study, we showed that the type Ialpha R2 homodimer has a distinctive Y-shaped structure, while the IIalpha and IIbeta homodimers are highly flexible and extended in solution. Here we present the results of X-ray scattering experiments on different isoforms of the PKA holoenzyme (R2C2) and show that the type IIbeta R2 homodimer undergoes a dramatic compaction upon binding C subunits that involves a 10A reduction in radius of gyration (from 56 to 46 A) and a 35 A shortening of the maximum linear dimension (from 180-145 A).
View Article and Find Full Text PDFCyclic AMP activates protein kinase A by binding to an inhibitory regulatory (R) subunit and releasing inhibition of the catalytic (C) subunit. Even though crystal structures of regulatory and catalytic subunits have been solved, the precise molecular mechanism by which cyclic AMP activates the kinase remains unknown. The dynamic properties of the cAMP binding domain in the absence of cAMP or C-subunit are also unknown.
View Article and Find Full Text PDFThe catalytic and regulatory subunits of cAMP-dependent protein kinase (PKA) are highly dynamic signaling proteins. In its dissociated state the catalytic subunit opens and closes as it moves through its catalytic cycle. In this subunit, the core that is shared by all members of the protein kinase family is flanked by N- and C-terminal segments.
View Article and Find Full Text PDFDifferent isoforms of the full-length protein kinase A (PKA) regulatory subunit homodimer (R2) and the catalytic (C) subunit-bound holoenzyme (R2C2) have very different global structures despite similar molecular weights and domain organization within their primary sequences. To date, it has been the linker sequence between the R subunit dimerization/docking domain and cAMP-binding domain A that has been implicated in modulating domain interactions to give rise to these differences in global structure. The small angle solution scattering data presented here for three different isoforms of PKA heterodimer (deltaR-C) complexes reveal a role for another conformationally dynamic sequence in modulating inter-subunit and domain interactions, the C helix that connects the cAMP-binding domains A and B of the R subunit.
View Article and Find Full Text PDFIt has been widely accepted that cAMP activates the protein kinase A (PKA) holoenzyme by dissociating the regulatory and catalytic subunits, thus freeing the catalytic subunit to phosphorylate its targets. However, recent experiments suggest that cAMP does not fully dissociate the holoenzyme. Here, we investigate this mechanism further by using small-angle X-ray scattering to study, at physiological enzyme concentrations, the type Ialpha and type IIbeta holoenzyme structures under equilibrium solution conditions without any labeling of the protein subunits.
View Article and Find Full Text PDFThe regulatory (R) subunits of the cAMP-dependent protein kinase (protein kinase A or PKA) are multi-domain proteins responsible for conferring cAMP-dependence and localizing PKA to specific subcellular locations. There are four isoforms of the R subunit in mammals that are similar in molecular mass and domain organization, but clearly serve different biological functions. Although high-resolution structures are available for the cAMP-binding domains and dimerization/docking domains of two isoforms, there are no high-resolution structures of any of the intact R subunit homodimer isoforms.
View Article and Find Full Text PDFWe present structural data on the RI alpha isoform of the cAMP-dependent protein kinase A that reveal, for the first time, a large scale conformational change within the RI alpha homodimer upon catalytic subunit binding. This result infers that the inhibition of catalytic subunit activity is not the result of a simple docking process but rather is a multi-step process involving local conformational changes both in the cAMP-binding domains as well as in the linker region of the regulatory subunit that impact the global structure of the regulatory homodimer. The results were obtained using small-angle neutron scattering with contrast variation and deuterium labeling.
View Article and Find Full Text PDF