Publications by authors named "Dominick Salerno"

Partial and/or heterogeneous irradiation of established (i.e., large, vascularized) tumors by α-particles that exhibit only a 4-5 cell-diameter range in tissue, limits the therapeutic effect, since regions not being hit by the high energy α-particles are likely not to be killed.

View Article and Find Full Text PDF

Combinations of platinum-based compounds with doxorubicin in free and/or in liposomal form for improved safety are currently being evaluated in the neoadjuvant setting on patients with advanced triple-negative breast cancer (TNBC). However, TNBC may likely be driven by chemotherapy-resistant cells. Additionally, established TNBC tumors may also exhibit diffusion-limited transport, resulting in heterogeneous intratumoral delivery of the administered therapeutics; this limits therapeutic efficacy in vivo.

View Article and Find Full Text PDF

Purpose: Highly cytotoxic α-particle radiotherapy delivered by tumor-selective nanocarriers is evaluated on metastatic Triple Negative Breast Cancer (TNBC). On vascularized tumors, the limited penetration of nanocarriers (<50-80 μm) combined with the short range of α-particles (40-100 μm) may, however, result in only partial tumor irradiation, compromising efficacy. Utilizing the α-particle emitter Actinium-225 (Ac), we studied how the therapeutic potential of a general delivery strategy using nanometer-sized engineered liposomes was affected by two key transport-driven properties: (1) the release from liposomes, when in the tumor interstitium, of the highly diffusing Ac-DOTA that improves the uniformity of tumor irradiation by α-particles and (2) the adhesion of liposomes on the tumors' ECM that increases liposomes' time-integrated concentrations within tumors and, therefore, the tumor-delivered radioactivities.

View Article and Find Full Text PDF

The poor prognosis of triple-negative breast cancer (TNBC) is attributed largely to the lack of tumor-selective therapeutic modalities that effectively deliver lethal doses at the sites of metastatic disease. Tumor-selective drug delivery strategies that aim to improve uniformity in intratumoral drug microdistributions and to prolong exposure of these cancer cells to delivered therapeutics may improve therapeutic efficacy against established TNBC metastases. In this study, we present lipid carriers for selective (due to their nanometer size) tumor delivery, which are loaded with cisplatin and designed to exhibit the following properties when in the tumor interstitium: (1) interstitial drug release (for deeper tumor penetration of cisplatin) and/or (2) intratumoral/interstitial adhesion of the carriers to tumors' extracellular matrix (ECM)-not accompanied by cell internalization-for delayed tumor clearance of carriers prolonging cancer cell exposure to the cisplatin being released.

View Article and Find Full Text PDF