Publications by authors named "Dominick J Paolillo"

Microscopic studies of chloroplasts can be traced back to the year 1678 when Antonie van Leeuwenhoek reported to the Royal Society in London that he saw green globules in grass leaf cells with his single-lens microscope. Since then, microscopic studies have continued to contribute critical insights into the complex architecture of chloroplast membranes and how their structure relates to function. This review is organized into three chronological sections: During the classic light microscope period (1678-1940), the development of improved microscopes led to the identification of green grana, a colorless stroma, and a membrane envelope.

View Article and Find Full Text PDF

Full appreciation of the roles of the plant cuticle in numerous aspects of physiology and development requires a comprehensive understanding of its biosynthesis and deposition; however, much is still not known about cuticle structure, trafficking and assembly. To date, assessment of cuticle organization has been dominated by 2D imaging, using histochemical stains in conjunction with light and fluorescence microscopy. This strategy, while providing valuable information, has limitations because it attempts to describe a complex 3D structure in 2D.

View Article and Find Full Text PDF

Transgenic plants have facilitated our understanding of the functional roles of genes and the metabolic processes affected in plants. Recently, the Or gene was isolated from an orange cauliflower mutant and it was shown that the Or gene could serve as a novel genetic tool to enrich carotenoid content in transgenic potato tubers. An in-depth characterization of these Or transgenic lines is presented here.

View Article and Find Full Text PDF

Despite recent progress in our understanding of carotenogenesis in plants, the mechanisms that govern overall carotenoid accumulation remain largely unknown. The Orange (Or) gene mutation in cauliflower (Brassica oleracea var botrytis) confers the accumulation of high levels of beta-carotene in various tissues normally devoid of carotenoids. Using positional cloning, we isolated the gene representing Or and verified it by functional complementation in wild-type cauliflower.

View Article and Find Full Text PDF

Based on positive results for 11 of 17 species included in an anatomical survey of tree roots, we concluded that the origin of adventitious branch roots (ABR) on established, undisturbed woody parental root axes is a widespread occurrence. ABR were morphologically indistinguishable from branch roots formed in primary tissues of a parental axis, and they occurred without increase in branch root density. We concluded that ABR are an unrecognized component of undamaged root systems.

View Article and Find Full Text PDF

We report the biomechanics and anatomy of fruit wall peels (before and after cellulase/pectinase treatment) from two Lycopersicon esculentum cultivars (i.e., Inbred 10 and Sweet 100 cherry tomatoes).

View Article and Find Full Text PDF

We examined the hypothesis that the procumbent growth habit of the rare, columnar cactus Stenocereus eruca is in part the result of a diminution of the mechanical properties of stem tissues by comparing the properties of S. eruca plants with those of the putatively closely related semi-erect shrub S. gummosus.

View Article and Find Full Text PDF

The formation of adventitious branch roots in the secondary tissues of parental root axes is a widespread and frequent occurrence under field conditions. Anatomical features diagnostic for the recognition of adventitious roots were utilized to confirm the occurrence of adventitious roots on roots of 22 species from 12 families in nine orders of dicotyledonous plants. Adventitious roots may play an important role in generating the population of fine roots as part of root turnover in the soil.

View Article and Find Full Text PDF

We report on the root system of the large columnar cactus species Pachycereus pringlei to explore the hypothesis that increasing plant size decreases the ability to resist wind-throw but increases the capacity to absorb and store nutrients in roots (i.e., plant size limits the performance of these functions and may shift the performance of one function in favor of another as size increases).

View Article and Find Full Text PDF

During the initial phases of elongation of pea internodes, oat and rice coleoptiles, oat mesocotyls, soybean hypocotyls and dandelion peduncles, net transverse orientation of cellulose wall microfibrils (Mfs) was found in the outer epidermal wall. This paper demonstrates that in all these axes, with the exception of rice coleoptile, net longitudinal orientation of microfibrils occurs in the outer epidermal wall in portions of the axes that were still elongating at the time of sampling. The timing of the transition to net longitudinal orientation and whether the transition proceeded acropetally or basipetally varied with the type of axis under study.

View Article and Find Full Text PDF