Purpose: To evaluate between-site agreement of apparent diffusion coefficient (ADC) measurements in preclinical magnetic resonance imaging (MRI) systems.
Materials And Methods: A miniaturized thermally stable ice-water phantom was devised. ADC (mean and interquartile range) was measured over several days, on 4.
The integration of skeletal muscle substrate depletion, metabolite accumulation, and fatigue during large muscle-mass exercise is not well understood. Measurement of intramuscular energy store degradation and metabolite accumulation is confounded by muscle heterogeneity. Therefore, to characterize regional metabolic distribution in the locomotor muscles, we combined 31P magnetic resonance spectroscopy, chemical shift imaging, and T2-weighted imaging with pulmonary oxygen uptake during bilateral knee-extension exercise to intolerance.
View Article and Find Full Text PDFMagnetic resonance spectroscopy allows noninvasive in vivo measurements of biochemical information from living systems, ranging from cultured cells through experimental animals to humans. Studies of biopsies or extracts offer deeper insights by detecting more metabolites and resolving metabolites that cannot be distinguished in vivo. The pharmacokinetics of certain drugs, especially fluorinated drugs, can be directly measured in vivo.
View Article and Find Full Text PDFPurpose: To evaluate the accuracy of (1)H-MR spectroscopy ((1)H-MRS) as an intervention limiting diagnostic tool for glioblastoma multiforme. GBM is the most common and aggressive primary brain tumor, with mean survival under a year. Oncological practice currently requires histopathological diagnosis before radiotherapy.
View Article and Find Full Text PDFBackground: 5-Fluorouracil remains widely used in colorectal cancer treatment more than 40 years after its development. 19F magnetic resonance spectroscopy can be used in vivo to measure 5FU's half-life and metabolism to cytotoxic fluoronucleotides. Previous studies have shown better survival associated with longer 5FU tumour half-life.
View Article and Find Full Text PDFBackground: Cerebral small vessel disease (SVD) is an important cause of cognitive impairment, but the pathophysiological mechanisms remain unclear. We used (1)H MRS to investigate brain metabolic differences between patients with SVD and controls and correlated this with cognition.
Methods: 35 patients with SVD (lacunar stroke and radiological evidence of confluent leukoaraiosis) and 35 controls underwent multi-voxel spectroscopic imaging of white matter to obtain absolute metabolite concentrations of N-acetylaspartate (NAA), total creatines, total cholines, myo-inositol, and lactate.
Purpose: Vascular disrupting agents are anticancer agents that typically produce a cytostatic tumor response. Vessel size index magnetic resonance imaging (MRI) allows for the estimation of the fractional blood volume (fBV) and blood vessel size (Rv). We assessed whether the vessel size index parameters provided imaging biomarkers for detecting early tumor response to a vascular disrupting agent.
View Article and Find Full Text PDFIn patients with cerebral small vessel disease (SVD) diffusion tensor imaging (DTI) is sensitive to white matter damage and correlates better with cognitive function than conventional imaging. It has been proposed as a surrogate marker for treatment trials. However, the pathological changes underlying DTI are not known.
View Article and Find Full Text PDFPurpose: To investigate the relationship between subject age and white matter brain metabolite concentrations and R(2) relaxation rates in a cross-sectional study of human brain.
Materials And Methods: Long- and short-echo proton spectroscopic imaging were used to investigate concentrations and R2 relaxation rates of N-acetyl aspartate (NAA) + N-acetyl aspartyl glutamate (NAAG), choline (Cho), creatine (Cr), and myoinositol (mI) in the white matter of the centrum semiovale of 106 healthy volunteers aged 50-90 years; usable data were obtained from 79 subjects. A major aim was to identify which parameters were most sensitive to changes with age.
Cerebral small vessel disease results in lacunar infarcts and cognitive impairment. Diffusion tensor imaging (DTI) demonstrates a reduction in fractional anisotropy and increase in mean diffusivity, which correlates more strongly with cognition than conventional MRI. The underlying pathological basis for these DTI changes is not known.
View Article and Find Full Text PDFThe dose-dependent effects of 5,6-dimethylxanthenone-4-acetic acid (DMXAA) on rat GH3 prolactinomas were investigated in vivo. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) was used to assess tumor blood flow/permeability pretreatment and 24 hours posttreatment with 0, 100, 200, or 350 mg/kg DMXAA. DCE-MRI data were analyzed using K(trans) and the integrated area under the gadolinium time curve (IAUGC) as response biomarkers.
View Article and Find Full Text PDFThe effective magnetic resonance imaging (MRI) transverse relaxation rate R(2)* was investigated as an early acute marker of the response of rat GH3 prolactinomas to the vascular-targeting agent, ZD6126. Multigradient echo (MGRE) MRI was used to quantify R(2)*, which is sensitive to tissue deoxyhemoglobin levels. Tumor R(2)* was measured prior to, and either immediately for up to 35 minutes, or 24 hours following administration of 50 mg/kg ZD6126.
View Article and Find Full Text PDFTumor vasculature is an attractive therapeutic target as it differs structurally from normal vasculature, and the destruction of a single vessel can lead to the death of many tumor cells. The effects of antivascular drugs are frequently short term, with regrowth beginning less than 24 hours posttreatment. This study investigated the duration of the response to the vascular targeting agent, ZD6126, of the GH3 prolactinoma, in which efficacy and dose-response have previously been demonstrated.
View Article and Find Full Text PDFDynamic contrast-enhanced MRI is widely used for the evaluation of the response of experimental rodent tumours to antitumour therapy, particularly for the newly developing antiangiogenic and antivascular agents. However, standard models require a time-course for the plasma concentration of contrast agent (usually referred to as the arterial input function) to calculate the transfer constant K(trans) from the dynamic time-course data. Ideally, the plasma concentration time-course should be measured during each experiment to obtain the most accurate measure of K(trans).
View Article and Find Full Text PDFPurpose: To derive and implement a method for correcting spatial distortion caused by in vivo inhomogeneous static magnetic fields in echo-planar imaging (EPI).
Materials And Methods: The reversed gradient method, which was initially devised to correct distortion in images generated by spin-warp MRI, was adapted to correct distortion in EP images. This method provides point-by-point correction of distortion throughout the image.