Background: This study aimed to identify the better arc configuration of volumetric modulated arc therapy (VMAT) for high-grade glioma and glioblastoma, focusing on a dose reduction to the hypothalamic-pituitary axis through an analysis of dose-volumetric parameters, as well as a correlation analysis between the planned target volume (PTV) to organs at risk (OAR) distance and the radiation dose.
Method: Twenty-four patients with 9 high-grade glioma and 15 glioblastomas were included in this study. Identical CT, MRI and structure sets of each patient were used for coplanar VMAT (CO-VMAT), dual planar VMAT (DP-VMAT) and multi-planar VMAT (MP-VMAT) planning.
Objectives: This study aimed to find the optimal radiotherapy VMAT plans, that achieved high conformity and homogeneity to the planned target volume (PTV), and minimize the dose to nearby organs at risk including the non-PTV lung, heart and oesophagus for patients with centrally located non-small Cell Lung Cancer.
Methods: A total of 18 patients who were treated for stage III centrally located non-small Cell Lung Cancer were selected retrospectively for this study. Identical CT datasets, 4D CT and structure dataset were used for radiotherapy planning based on single-planar VMAT (SP-VMAT), dual-planar VMAT (DP-VMAT) and Hybrid VMAT (H-VMAT).