Publications by authors named "Dominic M Thompson"

Biologic therapies have revolutionized treatment options for rheumatoid arthritis (RA) but their continuous administration at high doses may lead to adverse events. Thus, the development of improved drug delivery systems that can sense and respond commensurately to disease flares represents an unmet medical need. Toward this end, we generated induced pluripotent stem cells (iPSCs) that express interleukin-1 receptor antagonist (IL-1Ra, an inhibitor of IL-1) in a feedback-controlled manner driven by the macrophage chemoattractant protein-1 (Ccl2) promoter.

View Article and Find Full Text PDF

Hernias remain one of the most common ailments to affect men and women worldwide. Surgical mesh materials were first used to reinforce hernia defects during surgery in the late 1950s (Laker, n.d.

View Article and Find Full Text PDF

There is a substantial prevalence of post-operative incisional hernia for both laparoscopic and laparotomy procedures, but there have been few attempts at quantifying abdominal wound closure methodology in the literature. One method to ascertain a more robust method of wound closure is the identification of the influence of suture placement parameters on suture pullout force. Current surgical practice involves a recommended bite depth and bite separation of 10mm, but the evidence base for this is not clear.

View Article and Find Full Text PDF

There are few studies on the stress-stretch behaviour of human linea alba, yet understanding the mechanics of this tissue is important for developing better methods of abdominal wound closure. Published data focuses mainly on porcine linea alba and for human tissue there are conflicting results and no bi-axial data available. This variability is likely due to challenges with the physical dimensions of the tissue and differences in experimental methodology.

View Article and Find Full Text PDF

Background: Over 100 types of soft tissue repair materials are commercially available for hernia repair applications. These materials vary in characteristics such as mesh density, pore size, and pore shape. It is difficult to determine the impact of a single variable of interest due to other compounding variables in a particular design.

View Article and Find Full Text PDF

Background: Hernia repair failure may occur due to suboptimal mesh fixation by mechanical constructs before mesh integration. Construct design and acute penetration angle may alter mesh-tissue fixation strength. We compared acute fixation strengths of absorbable fixation devices at various deployment angles, directions of loading, and construct orientations.

View Article and Find Full Text PDF

Background: Over the past 60 years, the soft tissue repair market has grown to include over 50 types of hernia repair materials. Surgeons typically implant these materials in the orientation that provides maximum overlap of the mesh over the defect, with little regard for mechanical properties of the mesh material. If the characteristics of the meshes were better understood, an appropriate material could be identified for each patient, and meshes could be placed to optimize integration with neighboring tissue and avoid the mechanical mis-match that can lead to impaired graft fixation.

View Article and Find Full Text PDF

Objective: Lithium chloride (LiCl) has been shown to demonstrate anticancer properties at supratherapeutic doses. This study was designed to determine whether LiCl, as a single agent or in combination with cytotoxic agents, reduces ovarian cancer cell growth and metabolic activity at clinically achievable levels.

Methods: We studied the effects of LiCl on 2 high-grade serous ovarian cancer cell lines, SKOV3 and OVCA 433, and primary cultures developed from ascitic fluid collected from patients with metastatic high-grade serous ovarian cancer.

View Article and Find Full Text PDF

Objective: To determine the frequency and spectrum of mutations in RPL22 a gene identified by The Cancer Genome Atlas (TCGA) as mutated in endometrioid endometrial cancer, and determine the relationship between RPL22 defects and clinicopathologic features.

Methods: Direct sequencing of the entire coding region of the RPL22 cDNA and exons 2/4 was performed in tumors with/without microsatellite instability (MSI). RPL22 expression was assessed by immunofluorescence microscopy in the KLE, RL952 and AN3CA cell lines, wildtype, heterozygous and homozygous mutants, respectively.

View Article and Find Full Text PDF

Regulating the transition from lineage-restricted progenitors to terminally differentiated cells is a central aspect of nervous system development. Here, we investigated the role of the nucleoprotein geminin in regulating neurogenesis at a mechanistic level during both Xenopus primary neurogenesis and mammalian neuronal differentiation in vitro. The latter work utilized neural cells derived from embryonic stem and embryonal carcinoma cells in vitro and neural stem cells from mouse forebrain.

View Article and Find Full Text PDF

Purpose: Effective treatments for advanced endometrial cancer are lacking. Novel therapies that target specific pathways hold promise for better treatment outcomes with less toxicity. Mutation activation of the FGFR2/RAS/ERK pathway is important in endometrial tumorigenesis.

View Article and Find Full Text PDF

Massively parallel DNA sequencing technologies provide an unprecedented ability to screen entire genomes for genetic changes associated with tumour progression. Here we describe the genomic analyses of four DNA samples from an African-American patient with basal-like breast cancer: peripheral blood, the primary tumour, a brain metastasis and a xenograft derived from the primary tumour. The metastasis contained two de novo mutations and a large deletion not present in the primary tumour, and was significantly enriched for 20 shared mutations.

View Article and Find Full Text PDF

Background Information: Geminin (Gem) is a protein with roles in regulating both the fidelity of DNA replication and cell fate during embryonic development. The distribution of Gem is predominantly nuclear in cells undergoing the cell cycle. Previous studies have demonstrated that Gem performs multiple activities in the nucleus and that regulation of Gem activation requires nuclear import in at least one context.

View Article and Find Full Text PDF