Optically induced intersite spin transfer (OISTR) promises manipulation of spin systems within the ultimate time limit of laser excitation. Following its prediction, signatures of ultrafast spin transfer between oppositely aligned spin sublattices have been observed in magnetic alloys and multilayers. However, it is known neither from theory nor from experiment whether the band structure immediately follows the ultrafast change in spin polarization or whether the exchange split bands remain rigid.
View Article and Find Full Text PDFLow-field magnetotransport measurements of topological insulators such as Bi2Se3 are important for revealing the nature of topological surface states by quantum corrections to the conductivity, such as weak-antilocalization. Recently, a rich variety of high-field magnetotransport properties in the regime of high electron densities (∼10(19) cm(-3)) were reported, which can be related to additional two-dimensional layered conductivity, hampering the identification of the topological surface states. Here, we report that quantum corrections to the electronic conduction are dominated by the surface states for a semiconducting case, which can be analyzed by the Hikami-Larkin-Nagaoka model for two coupled surfaces in the case of strong spin-orbit interaction.
View Article and Find Full Text PDF