Activity of the neurons in the lateral intraparietal cortex (LIP) displays a mixture of sensory, motor, and memory signals. Moreover, they often encode signals reflecting the accumulation of sensory evidence that certain eye movements might lead to a desirable outcome. However, when the environment changes dynamically, animals are also required to combine the information about its previously chosen actions and their outcomes appropriately to update continually the desirabilities of alternative actions.
View Article and Find Full Text PDFAlthough economic theories based on utility maximization account for a range of choice behaviors, utilities must be estimated through experience. Dynamics of this learning process may account for certain discrepancies between the predictions of economic theories and real choice behaviors of humans and other animals. To understand the neural mechanisms responsible for such adaptive decision making, we trained rhesus monkeys to play a simulated matching pennies game.
View Article and Find Full Text PDFBrain Res Cogn Brain Res
October 2005
Game theory provides a solution to the problem of finding a set of optimal decision-making strategies in a group. However, people seldom play such optimal strategies and adjust their strategies based on their experience. Accordingly, many theories postulate a set of variables related to the probabilities of choosing various strategies and describe how such variables are dynamically updated.
View Article and Find Full Text PDFBrain Res Cogn Brain Res
December 2004
Animals living in a dynamic environment must adjust their decision-making strategies through experience. To gain insights into the neural basis of such adaptive decision-making processes, we trained monkeys to play a competitive game against a computer in an oculomotor free-choice task. The animal selected one of two visual targets in each trial and was rewarded only when it selected the same target as the computer opponent.
View Article and Find Full Text PDFIn a multi-agent environment, where the outcomes of one's actions change dynamically because they are related to the behavior of other beings, it becomes difficult to make an optimal decision about how to act. Although game theory provides normative solutions for decision making in groups, how such decision-making strategies are altered by experience is poorly understood. These adaptive processes might resemble reinforcement learning algorithms, which provide a general framework for finding optimal strategies in a dynamic environment.
View Article and Find Full Text PDF