The progressive decline in kidney function and concomitant loss of renal 1alpha-hydroxylase (CYP27B1) in chronic kidney disease (CKD) are associated with a gradual loss of circulating 25-hydroxyvitamin D(3) (25(OH)D(3)) and 1alpha,25-dihydroxyvitamin D(3) (1alpha,25(OH)(2)D(3)). However, only the decrease in 1alpha,25(OH)(2)D(3) can be explained by the decline of CYP27B1, suggesting that insufficiency of both metabolites may reflect their accelerated degradation by the key catabolic enzyme 24-hydroxylase (CYP24). To determine whether CYP24 is involved in causing vitamin D insufficiency and/or resistance to vitamin D therapy in CKD, we determined the regulation of CYP24 and CYP27B1 in normal rats and rats treated with adenine to induce CKD.
View Article and Find Full Text PDFThe cytochrome P450 enzyme 24-hydroxylase (CYP24) plays a critical role in regulating levels of vitamin D hormone. Aberrant expression of CYP24 has been implicated in vitamin D insufficiency and resistance to vitamin D therapy. We have demonstrated amplified CYP24 expression in uremic rats, suggesting that CYP24 has an etiological role in vitamin D insufficiency commonly associated with chronic kidney disease (CKD).
View Article and Find Full Text PDFBiochim Biophys Acta
October 2009
Calpains are intracellular proteases that selectively cleave proteins in response to calcium signals. Although calpains cut many different sequences, residue preferences within peptide substrates were recently determined and incorporated into a superior FRET (fluorescence resonance energy transfer)-based substrate (PLFAER). Here we show PLFAER is cleaved by calpain at the intended F-A scissile bond.
View Article and Find Full Text PDFBioorg Med Chem Lett
August 2009
The Eph family of receptor tyrosine kinases has drawn growing attention due to their role in regulating diverse biological phenomena. However, pharmacological interrogation of Eph kinase function has been hampered by a lack of potent and selective Eph kinase inhibitors. Here we report the discovery of compounds 6 and 9 using a rationally designed kinase-directed library which potently inhibit Eph receptor tyrosine kinases, particularly EphB2 with cellular EC(50)s of 40nM.
View Article and Find Full Text PDFCalpains are intracellular cysteine proteases that catalyze the cleavage of target proteins in response to Ca(2+) signaling. When Ca(2+) homeostasis is disrupted, calpain overactivation causes unregulated proteolysis, which can contribute to diseases such as postischemic injury and cataract formation. Potent calpain inhibitors exist, but of these many cross-react with other cysteine proteases and will need modification to specifically target calpain.
View Article and Find Full Text PDFCalpains are calcium-dependent proteases that are required for numerous intracellular processes but also play an important role in the development of pathologies such as ischemic injury and neurodegeneration. Many current small molecule calpain inhibitors also inhibit other cysteine proteases, including cathepsins, and need improved selectivity. The specificity of inhibition of several calpains and papain was profiled using synthetic positional scanning libraries of epoxide-based compounds that target the active-site cysteine.
View Article and Find Full Text PDFCalpains are proteases that catalyze the limited cleavage of target proteins in response to Ca(2+) signaling. Because of their involvement in pathological conditions such as post-ischemic injury and Alzheimer and Parkinson disease, calpains form a class of pharmacologically significant targets for inhibition. We have determined the sequence preference for the hydrolysis of peptide substrates of the ubiquitous mu-calpain isoform by a peptide library-based approach using the proteolytic core of mu-calpain (muI-II).
View Article and Find Full Text PDFRitonavir, an inhibitor of HIV-1 protease, has been reported to also inhibit the Ca2+-dependent cysteine protease, calpain. We have investigated these claims with an in vitro study of the effect of ritonavir on the m-calpain and mu-calpain isoforms. Ritonavir failed to block either autolytic or hydrolytic calpain activity, but remained fully capable of inhibiting the HIV-1 protease.
View Article and Find Full Text PDF