Publications by authors named "Dominic Ciavatta"

Now in its 25th year, the Mutant Mouse Resource and Research Center (MMRRC) consortium continues to serve the United States and international biomedical scientific community as a public repository and distribution archive of laboratory mouse models of human disease for research. Supported by the National Institutes of Health (NIH), the MMRRC consists of 4 regionally distributed and dedicated vivaria, offices, and specialized laboratory facilities and an Informatics Coordination and Service Center (ICSC). The overarching purpose of the MMRRC is to facilitate groundbreaking biomedical research by offering an extensive repertoire of mutant mice that are essential for advancing the understanding of human physiology and disease.

View Article and Find Full Text PDF
Article Synopsis
  • The MiniMUGA genotyping array is a widely used tool for ensuring genetic quality control in laboratory mice and for genotyping various experimental crosses, particularly those of reduced complexity.
  • Recent efforts have focused on enhancing the performance of the MiniMUGA array by improving marker annotation and increasing the reliability and number of consensus genotypes for inbred strains and substrains.
  • Key updates to the informatics pipeline and report layout aim to simplify data interpretation and enhance overall utility, promoting better rigor and reproducibility in mouse-based biomedical research.
View Article and Find Full Text PDF

Autoimmune diseases are commonly associated with a polygenic inheritance pattern. In rare instances, causal monogenic variants have been identified. The study by Liu et al.

View Article and Find Full Text PDF

Regulation of autoreactive cells is key for both prevention and amelioration of autoimmune disease. A better understanding of the key cell population(s) responsible for downregulation of autoreactive cells would provide necessary foundational insight for cellular-based therapies in autoimmune disease. Utilizing a mouse model of anti-myeloperoxidase (MPO) glomerulonephritis, we sought to understand which immune cells contribute to downregulation of the anti-MPO autoimmune response.

View Article and Find Full Text PDF

The MiniMUGA genotyping array is a popular tool for genetic QC of laboratory mice and genotyping of samples from most types of experimental crosses involving laboratory strains, particularly for reduced complexity crosses. The content of the production version of the MiniMUGA array is fixed; however, there is the opportunity to improve array's performance and the associated report's usefulness by leveraging thousands of samples genotyped since the initial description of MiniMUGA in 2020. Here we report our efforts to update and improve marker annotation, increase the number and the reliability of the consensus genotypes for inbred strains and increase the number of constructs that can reliably be detected with MiniMUGA.

View Article and Find Full Text PDF
Article Synopsis
  • * Patients with this genetic change showed higher levels of a protein (PR3) in their blood and immune cells compared to those without it.
  • * This genetic change might make patients more likely to get sick again with PR3-ANCA vasculitis, showing how important this protein is in the disease.
View Article and Find Full Text PDF

Objectives: T regulatory cells (Tregs) are a heterogeneous group of immunoregulatory cells that dampen self-harming immune responses and prevent the development of autoimmune diseases. In anti-neutrophil cytoplasmic autoantibody (ANCA) vasculitis, Tregs possess diminished suppressive capacity, which has been attributed to the expression of a FOXP3 splice-variant lacking exon 2 in T cells (FOXP3Δ2 CD4 T cells). However, the suppressive capacity of Tregs varies between subsets.

View Article and Find Full Text PDF

Background: PR3-ANCA vasculitis has a genetic association with HLA-DPB1. We explored immunologic and clinical features related to the interaction of HLA-DPB1*04:01 with a strongly binding PR3 peptide epitope (PR3).

Methods: Patients with ANCA vasculitis with active disease and disease in remission were followed longitudinally.

View Article and Find Full Text PDF
Article Synopsis
  • The laboratory mouse is the leading model in biomedical research due to its well-studied genome, but genetic quality control (QC) in mouse studies lacks standardization and cost-effective methods.* -
  • The MiniMUGA is a new genetic QC platform featuring over 11,000 probes that offers advantages like chromosomal sex determination, substrain discrimination, and easy-to-read reports on genetic data.* -
  • Testing MiniMUGA on nearly 7,000 samples showed it performs well, matching or exceeding earlier versions in accuracy, and it also provides new consensus genotypes for multiple inbred mouse strains.*
View Article and Find Full Text PDF

ANCA vasculitis is an autoimmune disease with increased expression of the autoantigen genes, myeloperoxidase (MPO) and proteinase 3 (PRTN3), but the origin and significance of expression is less distinct. To clarify this, we measured MPO and PRTN3 messenger RNA in monocytes, normal-density neutrophils, and in enriched leukocytes from peripheral blood mononuclear cells. Increased autoantigen gene expression was detected in normal-density neutrophils and enriched leukocytes from patients during active disease compared to healthy individuals, with the largest difference in enriched leukocytes.

View Article and Find Full Text PDF

Background: Treatment of autoimmune diseases has relied on broad immunosuppression. Knowledge of specific interactions between human leukocyte antigen (HLA), the autoantigen, and effector immune cells, provides the foundation for antigen-specific therapies. These studies investigated the role of HLA, specific myeloperoxidase (MPO) epitopes, CD4 T cells, and ANCA specificity in shaping the immune response in patients with anti-neutrophil cytoplasmic autoantibody (ANCA) vasculitis.

View Article and Find Full Text PDF

Objective: To identify risk alleles relevant to the causal and biologic mechanisms of antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV).

Methods: A genome-wide association study and subsequent replication study were conducted in a total cohort of 1,986 cases of AAV (patients with granulomatosis with polyangiitis [Wegener's] [GPA] or microscopic polyangiitis [MPA]) and 4,723 healthy controls. Meta-analysis of these data sets and functional annotation of identified risk loci were performed, and candidate disease variants with unknown functional effects were investigated for their impact on gene expression and/or protein function.

View Article and Find Full Text PDF

ANCA-associated vasculitis is an autoimmune condition characterized by vascular inflammation and organ damage. Pharmacologically induced remission of this condition is complicated by relapses. Potential triggers of relapse are immunologic challenges and environmental insults, both of which associate with changes in epigenetic silencing modifications.

View Article and Find Full Text PDF

Background: Anti-neutrophil cytoplasmic autoantibody (ANCA)-associated vasculitis (AAV) is a systemic autoimmune disease characterized by destructive vascular inflammation. Two prominent ANCA autoantigens are myeloperoxidase (MPO) and proteinase 3 (PR3), and transcription of and , the genes encoding the autoantigens, is associated with disease activity. We investigated whether patients with AAV have alterations in histone modifications, particularly those associated with transcriptional activation, at and .

View Article and Find Full Text PDF

Proteinase 3 (PR3) and myeloperoxidase (MPO) are two major autoantigens in patients with vasculitis with ANCA. The genes encoding these autoantigens are abnormally expressed in peripheral granulocytes of patients with active ANCA-associated vasculitis. This study provides evidence that this transcriptional dysregulation results in a variety of mRNA processing events from the PRTN3 gene locus.

View Article and Find Full Text PDF

Myeloperoxidase (MPO) is a target antigen for antineutrophil cytoplasmic autoantibodies (ANCA). There is evidence that MPO-ANCA cause necrotizing and crescentic glomerulonephritis (NCGN) and vasculitis. NCGN severity varies among patients with ANCA disease, and genetic factors influence disease severity.

View Article and Find Full Text PDF

Antineutrophil cytoplasmic autoantibody (ANCA) causes vascular injury that leads to small-vessel vasculitis. Patients with ANCA aberrantly express neutrophil granule-encoding genes, including 2 that encode autoantigens: proteinase 3 (PR3) and myeloperoxidase (MPO). To uncover a potential transcriptional regulatory mechanism for PR3 and MPO disrupted in patients with ANCA vasculitis, we examined the PR3 and MPO loci in neutrophils from ANCA patients and healthy control individuals for epigenetic modifications associated with gene silencing.

View Article and Find Full Text PDF

CTCF is a conserved transcriptional regulator with binding sites in DNA insulators identified in vertebrates and invertebrates. The Drosophila Abdominal-B locus contains CTCF binding sites in the Fab-8 DNA insulator. Previous reports have shown that Fab-8 has enhancer blocking activity in Drosophila transgenic assays.

View Article and Find Full Text PDF

Some genes on the inactive X chromosome escape silencing. One possible escape mechanism is that heterochromatization during X inactivation can be blocked by boundary elements. DNA insulators are candidates for blocking because they shield genes from influences of their chromosomal environment.

View Article and Find Full Text PDF

Progress in isolating stem cells from tissues, or generating them from adult cells by nuclear transfer, encourages attempts to use stem cells from affected individuals for gene correction and autologous therapy. Current viral vectors are efficient at introducing transgenic sequences but result in random integrations. Gene targeting, in contrast, can directly correct an affected gene, or incorporate corrective sequences into a site free from undesirable side effects, but efficiency is low.

View Article and Find Full Text PDF

Polymorphic differences altering expression of genes without changing their products probably underlie human quantitative traits affecting risks of serious diseases, but methods for investigating such quantitative differences in animals are limited. Accordingly, we have developed a procedure for changing the expression in mice of chosen genes over a 100-fold range while retaining their chromosomal location and transcriptional controls. To develop the procedure, we first dissected the effects in embryonic stem (ES) cells of elements within and downstream of the 3' untranslated region (UTR) of a single copy transgene at the Hprt locus.

View Article and Find Full Text PDF