Publications by authors named "Dominic A Depke"

Inflammation is a dynamic process which importantly involves migration of immune cells. Understanding the onset, acute phase and resolution of inflammation is greatly facilitated by their imaging. However, immune cells are sensitive, difficult to genetically manipulate and prone to changes in response to contact, hindering the application of well-established cell labeling methods.

View Article and Find Full Text PDF

Immunorecognition provides an excellent basis for targeted imaging techniques covering a wide range from basic research to diagnostics and from single cells to whole organisms. Fluorescence- or radioisotope-labeled antibodies, antibody fragments or nanobodies enable a direct signal readout upon binding and allow for versatile imaging from microscopy to whole-body imaging. However, as the signal intensity directly correlates with the number of labeled antibodies bound to their epitopes (1:1 binding), sensitivity for low-expressing epitopes can be limiting for visualization.

View Article and Find Full Text PDF

Inflammation is a common, fast, and innate response of the immune system to sterile or infectious tissue damage or autoimmune triggers. It aims at minimizing tissue destruction and maintaining organ function, hence is vital to life. Therefore, the immune system comprises the concerted action of a variety of different immune cells with specific tasks in the initiation, maintenance, and termination of inflammation.

View Article and Find Full Text PDF

Absence seizures (ASs) are characterized by pathological electrographic oscillations in the cerebral cortex and thalamus, which are called spike-and-wave discharges (SWDs). Subcortical structures, such as the cerebellum, may well contribute to the emergence of ASs, but the cellular and molecular underpinnings remain poorly understood. Here we show that the genetic ablation of P/Q-type calcium channels in cerebellar granule cells (quirky) or Purkinje cells (purky) leads to recurrent SWDs with the purky model showing the more severe phenotype.

View Article and Find Full Text PDF

Bioorthogonal covalent labeling with self-labeling enzymes like SNAP-tag bears a high potential for specific targeting of cells for imaging and also . To this end, fluorescent SNAP substrates have been established and used in microscopy and fluorescence imaging while radioactive substrates for the highly sensitive and whole-body positron emission tomography (PET) have been lacking. Here, we show for the first time successful and high-contrast PET imaging of subcutaneous SNAP-tag expressing tumor xenografts by bioorthogonal covalent targeting with a novel F-based radioligand .

View Article and Find Full Text PDF