Publications by authors named "Domingo S Rodriguez-Baena"

Gene networks have arisen as a promising tool in the comprehensive modeling and analysis of complex diseases. Particularly in viral infections, the understanding of the host-pathogen mechanisms, and the immune response to these, is considered a major goal for the rational design of appropriate therapies. For this reason, the use of gene networks may well encourage therapy-associated research in the context of the coronavirus pandemic, orchestrating experimental scrutiny and reducing costs.

View Article and Find Full Text PDF

In the last few years, gene networks have become one of most important tools to model biological processes. Among other utilities, these networks visually show biological relationships between genes. However, due to the large amount of the currently generated genetic data, their size has grown to the point of being unmanageable.

View Article and Find Full Text PDF

The great amount of biological information provides scientists with an incomparable framework for testing the results of new algorithms. Several tools have been developed for analysing gene-enrichment and most of them are Gene Ontology-based tools. We developed a Kyoto Encyclopedia of Genes and Genomes (Kegg)-based tool that provides a friendly graphical environment for analysing gene-enrichment.

View Article and Find Full Text PDF

Motivation: Binary datasets represent a compact and simple way to store data about the relationships between a group of objects and their possible properties. In the last few years, different biclustering algorithms have been specially developed to be applied to binary datasets. Several approaches based on matrix factorization, suffix trees or divide-and-conquer techniques have been proposed to extract useful biclusters from binary data, and these approaches provide information about the distribution of patterns and intrinsic correlations.

View Article and Find Full Text PDF

Establishing an association between variables is always of interest in genomic studies. Generation of DNA microarray gene expression data introduces a variety of data analysis issues not encountered in traditional molecular biology or medicine. Frequent pattern mining (FPM) has been applied successfully in business and scientific data for discovering interesting association patterns, and is becoming a promising strategy in microarray gene expression analysis.

View Article and Find Full Text PDF