Most commercially available red wines undergo alcoholic fermentation by yeasts, followed by a second fermentation with the lactic acid bacteria once the initial process is complete. However, this traditional approach can encounter complications in specific scenarios. These situations pose risks such as stalled alcoholic fermentation or the growth of undesirable bacteria while the process remains incomplete, leaving residual sugars in the wine.
View Article and Find Full Text PDFChitosan exerts a significant influence on various chemical parameters affecting the quality of wine produced using multiple strains of . The impact of chitosan on these parameters varies depending on the specific strain studied. We observed that, under the influence of chitosan, the fermentation kinetics accelerated for all examined strains.
View Article and Find Full Text PDFThe study explores diverse strains of in single-inoculum wine fermentation conditions using synthetic grape must. It aims to analyze the role of the species without external influences like other microorganisms or natural grape must variability. Commercial strains and selected vineyard isolates, untested together previously, are assessed.
View Article and Find Full Text PDFClimate change is causing a lack of acidity during winemaking and oenologists use several solutions to cope with such a problem. Lachancea thermotolerans, which has the potential to tolerate the harsh physicochemical conditions of wine, has emerged as a promising alternative for pH management during winemaking and, currently, it is the most valuable yeast used for acidity control in wine. In this work a manageable method for L.
View Article and Find Full Text PDFThe study performed sequential fermentations of red grape juice using several strains of Lachancea thermotolerans and one strain of Saccharomyces cerevisiae. Due to the new conditions imposed by climate change, wine acidity must be affected as well as the volatile profile. Non-Saccharomyces yeasts such as L.
View Article and Find Full Text PDFSaccharomyces cerevisiae is a highly fermentative species able to complete the wine fermentation. However, the interaction with other non-Saccharomyces yeasts can determine the fermentation performance of S. cerevisiae.
View Article and Find Full Text PDFWine fermentations are dominated by Saccharomyces yeast. However, dozens of non-Saccharomyces yeast genera can be found in grape musts and in the early and intermediate stages of wine fermentation, where they co-exist with S. cerevisiae.
View Article and Find Full Text PDFClimate change is generating several problems in wine technology. One of the main ones is lack of acidity and difficulties performing malolactic fermentation to stabilize wines before bottling. Among the different available acidity management technologies, such as direct acid addition, ion exchange resins, electro-membrane treatments, or vineyard management, the microbiological option is reliable and deeply studied.
View Article and Find Full Text PDFNetwork models and community phylogenetic analyses are applied to assess the composition, structure, and ecological assembly mechanisms of microbial communities. Here we combine both approaches to investigate the temporal dynamics of network properties in individual samples of two activated sludge systems at different adaptation stages. At initial assembly stages, we observed microbial communities adapting to activated sludge, with an increase in network modularity and co-exclusion proportion, and a decrease in network clustering, here interpreted as a consequence of niche specialization.
View Article and Find Full Text PDFThe interest in , a yeast species with unusual characteristics, has notably increased in all ecological, evolutionary, and industrial aspects. One of the key characteristics of is the production of high quantities of lactic acid compared to other yeast species. Its evolution has mainly been driven by the influence of the environment and domestication, allowing several metabolic traits to arise.
View Article and Find Full Text PDFDeception Island is a geothermal location in Antarctica that presents active fumaroles, which confers unique characteristics to this habitat. Several studies about microbial communities in Antarctica have been carried out, nevertheless, Antarctic microbiota is still partially unknown. Here we present a multidisciplinary study about sediments obtained by deposition during 4 years in which several approaches have been considered for their characterization.
View Article and Find Full Text PDFThe surfaces of grapes are covered by different yeast species that are important in the first stages of the fermentation process. In recent years, non- yeasts such as , , , and have become popular with regard to winemaking and improved wine quality. For that reason, several manufacturers started to offer commercially available strains of these non- species.
View Article and Find Full Text PDFWastewater treatment plants (WWTPs) are necessary to protect ecosystems quality and human health. Their function relies on the degradation of organic matter and nutrients from a water influent, prior to the effluent release into the environment. In this work we studied the bacterial community dynamics of a municipal WWTP with a membrane bioreactor through 16S rRNA gene sequencing.
View Article and Find Full Text PDFAlthough there are many chemical compounds present in wines, only a few of these compounds contribute to the sensory perception of wine flavor. This review focuses on the knowledge regarding varietal aroma compounds, which are among the compounds that are the greatest contributors to the overall aroma. These aroma compounds are found in grapes in the form of nonodorant precursors that, due to the metabolic activity of yeasts during fermentation, are transformed to aromas that are of great relevance in the sensory perception of wines.
View Article and Find Full Text PDFThe microbial diversity of wine alcoholic fermentation is not restricted to the presence and activity of Saccharomyces yeast strains. Some non-Saccharomyces species have been described as part of the fermentative microbiota, specially found in the initial steps of wine fermentations. These species may play roles from wine spoilage to flavor quality enhancement.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
October 2018
Quorum sensing (QS) is a mechanism dependent on bacterial density. This coordinated process is mediated by the synthesis and the secretion of signal molecules, called autoinducers (AIs). -acyl-homoserine lactones (AHLs) are the most common AIs that are used by Gram-negative bacteria and are involved in biofilm formation.
View Article and Find Full Text PDFIn last years, non-Saccharomyces yeasts have emerged as innovative tools to improve wine quality, being able to modify the concentration of sensory-impact compounds. Among them, varietal thiols released by yeasts, play a key role in the distinctive aroma of certain white wines. In this context, Torulaspora delbrueckii is in the spotlight because of its positive contribution to several wine quality parameters.
View Article and Find Full Text PDFThe killer phenomenon is defined as the ability of some yeast to secrete toxins that are lethal to other sensitive yeasts and filamentous fungi. Since the discovery of strains of capable of secreting killer toxins, much information has been gained regarding killer toxins and this fact has substantially contributed knowledge on fundamental aspects of cell biology and yeast genetics. The killer phenomenon has been studied in for several years, during which two toxins have been described.
View Article and Find Full Text PDFWine is a complex matrix that includes components with different chemical natures, the volatile compounds being responsible for wine aroma quality. The microbial ecosystem of grapes and wine, including and non- yeasts, as well as lactic acid bacteria, is considered by winemakers and oenologists as a decisive factor influencing wine aroma and consumer's preferences. The challenges and opportunities emanating from the contribution of wine microbiome to the production of high quality wines are astounding.
View Article and Find Full Text PDFMicroorganisms colonize surfaces and develop biofilms through interactions that are not yet thoroughly understood, with important implications for water and wastewater systems. This study investigated the interactions between N-acyl homoserine lactone (AHL)-producing bacteria, yeasts and protists, and their contribution to biofilm development. Sixty-one bacterial strains were isolated from activated sludge and screened for AHL production, with Aeromonas sp.
View Article and Find Full Text PDFDuring the last decade, the use of innovative yeast cultures of both Saccharomyces cerevisiae and non-Saccharomyces yeasts as alternative tools to manage the winemaking process have turned the oenology industry. Although the contribution of different yeast species to wine quality during fermentation is increasingly understood, information about their role in wine ageing over lees is really scarce. This work aims to analyse the incidence of three non-Saccharomyces yeast species of oenological interest (Torulaspora delbrueckii, Lachancea thermotolerans and Metschnikowia pulcherrima) and of a commercial mannoprotein-overproducer S.
View Article and Find Full Text PDFThe development of a selective medium for the rapid differentiation of yeast species with increased aromatic thiol release activity has been achieved. The selective medium was based on the addition of S-methyl-l-cysteine (SMC) as β-lyase substrate. In this study, a panel of 245 strains of Saccharomyces cerevisiae strains was tested for their ability to grow on YCB-SMC medium.
View Article and Find Full Text PDFPectinase enzymes have shown a considerable influence in both, sensitive and technological properties of wines. They can help to improve clarification process, releasing more color and flavor compounds entrapped in grape skin, facilitating the liberation of phenolic compounds. This work aims to find yeasts that, because of their native pectinases, can be applied on combined fermentations with Saccharomyces cerevisiae obtaining significant benefits over single-inoculated traditional fermentations.
View Article and Find Full Text PDF