Ternary Portland cement usage with a high amount of cement constituents different from clinker can afford great climate change advantages by lowering the Portland cement clinker content in the final product. This will contribute to cutting greenhouse gas emissions to close to zero by 2050. Such ternary Portland cements can be composed of different amounts of ground granulated blast-furnace slag (GBFS), coal fly ash (CFA), and clinker (K).
View Article and Find Full Text PDFThis work presents the results of the study of the physical, chemical, mineralogical and pozzolanic properties of the altered volcanic tuffs (AVT) that lie in the Los Frailes caldera, south of the Iberian Peninsula, and demonstrates their qualities as pozzolans for the manufacturing of mortars and pozzolanic cements of high mechanical strength. The main objective of this research is to show to what extent the AVTs can replace portland cement (PC) in mortars, with standardised proportions of 75:25% and 70:30% (PC-AVT). To achieve these objectives, three AVT samples were studied by a petrographic analysis of thin section (PATS), DRX, FRX and MEB.
View Article and Find Full Text PDFThis work describes the newly discovered zeolites in the eastern region of Cuba. In the researched area, there have been no previous studies of natural zeolite exploration. Therefore, the results shown here are new.
View Article and Find Full Text PDFTernary Portland cements are new cementitious materials that contain different amounts of cement replacements. Ternary Portland cements composed of granulated blast-furnace slag (GBFS), coal fly ash (CFA), and clinker (K) can afford some environmental advantages by lowering the Portland cement clinker use. Accordingly, this is an opportunity to reduce carbon dioxide emissions and achieve net-zero carbon emissions by 2050.
View Article and Find Full Text PDF