Publications by authors named "Dominga Latorre"

E-cadherin is the core protein of the epithelial adherens junction. Through its cytoplasmic domain, E-cadherin interacts with several signaling proteins; among them, α- and β-catenins mediate the link of E-cadherin to the actin cytoskeleton. Loss of E-cadherin expression is a crucial step of epithelial-mesenchymal transition (EMT) and is involved in cancer invasion and metastatization.

View Article and Find Full Text PDF

The mucosa of the small intestine is renewed completely every 3-5 d throughout the entire lifetime by small populations of adult stem cells that are believed to reside in the bottom of the crypts and to migrate and differentiate into all the different populations of intestinal cells. When the cells reach the apex of the villi and are fully differentiated, they undergo cell death and are shed into the lumen. Reactive oxygen species (ROS) production is proportional to the electron transfer activity of the mitochondrial respiration chain.

View Article and Find Full Text PDF

Purpose: The aim of this study was to investigate the angiogenic role of the hepatocyte growth factor (HGF)/cMET pathway and its inhibition in bone marrow endothelial cells (EC) from patients with multiple myeloma versus from patients with monoclonal gammopathy of undetermined significance (MGUS) or benign anemia (control group).

Experimental Design: The HGF/cMET pathway was evaluated in ECs from patients with multiple myeloma (multiple myeloma ECs) at diagnosis, at relapse after bortezomib- or lenalidomide-based therapies, or on refractory phase to these drugs; in ECs from patients with MGUS (MGECs); and in those patients from the control group. The effects of a selective cMET tyrosine kinase inhibitor (SU11274) on multiple myeloma ECs' angiogenic activities were studied in vitro and in vivo.

View Article and Find Full Text PDF

Mitochondria are involved in a variety of cellular biochemical pathways among which the ATP production by oxidative phosphorylation (OXPHOS) represents the most important function of the organelle. Since mitochondria contain their own genome encoding subunits of the OXPHOS apparatus, mtDNA mutations can cause different mitochondrial diseases. The impact of these mutations can be characterized by the trans-mitochondrial cybrid technique based on mtDNA-depleted cells (ρ(0)) as acceptors of exogenous mitochondria.

View Article and Find Full Text PDF

Development of hepatic steatosis and its progression to steatohepatitis may be the consequence of dysfunction of several metabolic pathways, such as triglyceride synthesis, very low-density lipoprotein (VLDL) secretion, and fatty acid β-oxidation. Peroxisome proliferator-activated receptor γ coactivator-1β (PGC-1β) is a master regulator of mitochondrial biogenesis and oxidative metabolism, lipogenesis, and triglyceride (TG) secretion. Here we generated a novel mouse model with constitutive hepatic activation of PGC-1β and studied the role of this transcriptional coactivator in dietary-induced steatosis and steatohepatitis.

View Article and Find Full Text PDF

Reduction of nutrient intake without malnutrition positively influences lifespan and healthspan from yeast to mice and exerts some beneficial effects also in humans. The AMPK-FoxO axis is one of the evolutionarily conserved nutrient-sensing pathways, and the FOXO3A locus is associated with human longevity. Interestingly, FoxO3A has been reported to be also a mitochondrial protein in mammalian cells and tissues.

View Article and Find Full Text PDF

We have recently shown that the transcriptional coactivator PGC1α, a master regulator of mitochondrial biogenesis and function, is involved in the control of the intestinal epithelium cell fate. Furthermore, PGC1α protects against colon cancer formation by promoting ROS accumulation and, consequently, mitochondria-mediated apoptosis. Here we provide an additional mechanistic insight into the tumor suppressor activity of PGC1α showing that its pro-apoptotic effect is mediated by Bax.

View Article and Find Full Text PDF

Peroxisome proliferator-activated receptor-γ coactivator 1-α (PGC1α) is a transcriptional coactivator able to up-regulate mitochondrial biogenesis, respiratory capacity, oxidative phosphorylation, and fatty acid β-oxidation with the final aim of providing a more efficient pathway for aerobic energy production. In the continuously renewed intestinal epithelium, proliferative cells in the crypts migrate along the villus axis and differentiate into mature enterocytes, increasing their respiratory capacity and finally undergoing apoptosis. Here we show that in the intestinal epithelial surface, PGC1α drives mitochondrial biogenesis and respiration in the presence of reduced antioxidant enzyme activities, thus determining the accumulation of reactive oxygen species and fostering the fate of enterocytes toward apoptosis.

View Article and Find Full Text PDF

In the present work we have critically examined the use of the KCN-titration technique in the study of the control of the cellular respiration by cytochrome c oxidase (COX) in the presence of the mitochondrial membrane potential (Δψ(mito)) in HepG2 cells. We clearly show that the apparent high inhibition threshold of COX in the presence of maximal Δψ(mito) is due to the KCN-induced decrease of Δψ(mito) and not to a low control of COX on the mitochondrial respiration. The tight control exerted by COX on the Δψ(mito) provides further insights for understanding the pathogenetic mechanisms associated with mitochondrial defects in human neuromuscular degenerative disorders.

View Article and Find Full Text PDF

SCO proteins are copper-donor chaperones involved in the assembly of mitochondrial cytochrome c oxidase (COX). Mutations in the two human SCO-encoding genes, SCO1 and SCO2, produce tissue-specific COX deficiencies associated with distinct clinical phenotypes. Here, we report the identification and characterization of scox, the single Drosophila melanogaster SCO-encoding gene.

View Article and Find Full Text PDF

Background: Chronic renal disease (CKD) is characterized by complex changes in cell metabolism leading to an increased production of oxygen radicals, that, in turn has been suggested to play a key role in numerous clinical complications of this pathological condition. Several reports have focused on the identification of biological elements involved in the development of systemic biochemical alterations in CKD, but this abundant literature results fragmented and not exhaustive.

Results: To better define the cellular machinery associated to this condition, we employed a high-throughput genomic approach based on a whole transcriptomic analysis associated with classical molecular methodologies.

View Article and Find Full Text PDF

Ever increasing evidence has been provided on the accumulation of mutations in the mitochondrial DNA (mtDNA) during the aging process. However, the lack of direct functional consequences of the mutant mtDNA load on the mitochondria-dependent cell metabolism has raised many questions on the physiological importance of the age-related mtDNA variations. In the present work, we have analyzed the bioenergetic properties associated with the age-related T414G mutation of the mtDNA control region in transmitochondrial cybrids.

View Article and Find Full Text PDF