Publications by authors named "Domenico de Fazio"

The relation between crystal symmetries, electron correlations and electronic structure steers the formation of a large array of unconventional phases of matter, including magneto-electric loop currents and chiral magnetism. The detection of such hidden orders is an important goal in condensed-matter physics. However, until now, non-standard forms of magnetism with chiral electronic ordering have been difficult to detect experimentally.

View Article and Find Full Text PDF

Terahertz time-domain spectroscopy (THz-TDS) can be used to map spatial variations in electrical properties such as sheet conductivity, carrier density, and carrier mobility in graphene. Here, we consider wafer-scale graphene grown on germanium by chemical vapor deposition with non-uniformities and small domains due to reconstructions of the substrate during growth. The THz conductivity spectrum matches the predictions of the phenomenological Drude-Smith model for conductors with non-isotropic scattering caused by backscattering from boundaries and line defects.

View Article and Find Full Text PDF

Background: Currently, several techniques for autologous fat graft (A-FG) preparation aimed at obtaining purified tissue exist. Both mechanical digestions via centrifugation, filtration, and enzymatic digestion were considered the most effective with different impacts in terms of adult adipose-derived stromal vascular fraction cells (AD-SVFs) amount that volume maintenance.

Objectives: This article aimed to report the in vivo and in vitro results, represented by fat volume maintenance and AD-SVFs amount, obtained by four different procedures of AD-SVFs isolation and A-FG purification based on centrifugation, filtration, centrifugation with filtration, and enzymatic digestion.

View Article and Find Full Text PDF

The scalable synthesis and transfer of large-area graphene underpins the development of nanoscale photonic devices ideal for new applications in a variety of fields, ranging from biotechnology, to wearable sensors for healthcare and motion detection, to quantum transport, communications, and metrology. We report room-temperature zero-bias thermoelectric photodetectors, based on single- and polycrystal graphene grown by chemical vapor deposition (CVD), tunable over the whole terahertz range (0.1-10 THz) by selecting the resonance of an on-chip patterned nanoantenna.

View Article and Find Full Text PDF

It is challenging for conventional top-down lithography to fabricate reproducible devices very close to atomic dimensions, whereas identical molecules and very similar nanoparticles can be made bottom-up in large quantities, and can be self-assembled on surfaces. The challenge is to fabricate electrical contacts to many such small objects at the same time, so that nanocrystals and molecules can be incorporated into conventional integrated circuits. Here, we report a scalable method for contacting a self-assembled monolayer of nanoparticles with a single layer of graphene.

View Article and Find Full Text PDF

Monolayer transition-metal dichalcogenides with direct bandgaps are emerging candidates for optoelectronic devices, such as photodetectors, light-emitting diodes, and electro-optic modulators. Here we report a low-loss integrated platform incorporating molybdenum ditelluride monolayers with silicon nitride photonic microresonators. We achieve microresonator quality factors >3 × 10 in the telecommunication O- to E-bands.

View Article and Find Full Text PDF

Objectives: The aim of this study was to evaluate the safety and efficacy of the use of FG-SVFs in face rejuvenation for esthetic improvement.

Methods: 33 female patients affected by face's soft-tissue defects with loss of volume, study group (SG), were treated with FG-SVFs, comparing results with a control group (CG) (n = 30) treated with fat graft not enhanced (FG). Clinical evaluation, a photographic assessment, magnetic resonance imaging (MRI), and ultrasound (US) were performed.

View Article and Find Full Text PDF

Graphene-based photodetectors have shown responsivities up to 10 A/W and photoconductive gains up to 10 electrons per photon. These photodetectors rely on a highly absorbing layer in close proximity to graphene, which induces a shift of the graphene chemical potential upon absorption, hence modifying its channel resistance. However, due to the semimetallic nature of graphene, the readout requires dark currents of hundreds of microamperes up to milliamperes, leading to high power consumption needed for the device operation.

View Article and Find Full Text PDF

Stromal vascular fraction (SVF) containing adipose stem cells (ASCs) has been used for many years in regenerative plastic surgery for autologous applications, without any focus on their potential allogenic role. Allogenic SVF transplants could be based on the possibility to use decellularized extracellular matrix (ECM) as a scaffold from a donor then re-cellularized by ASCs of the recipient, in order to develop the advanced therapy medicinal products (ATMP) in fully personalized clinical approaches. A systematic review of this field has been realized in accordance with the Preferred Reporting for Items for Systematic Reviews and Meta-Analyses-Protocols (PRISMA-P) guidelines.

View Article and Find Full Text PDF

Introduction: Mini-invasive therapies based on autologous non-activated Platelet-Rich Plasma (ANA-PRP), Low-Level Laser Therapy (LLL-T), and Micro-Needling Technique (MN-T) used in combining for hair re-growth need to be standardized.

Objectives: The work aims to show outcomes resulted from retrospective case-series study in which ANA-PRP + MN-T + LLL-T were used in combined in patients affected by Androgenic alopecia.

Methods: 23 patients were treated, of which 13 males were classified in stage I-V by the Norwood-Hamilton scale, and 10 females were classified in stage I-III by the Ludwig scale.

View Article and Find Full Text PDF

Background: The treatment of breast ptosis and gland hypoplasia in a single surgery is a challenging procedure and the result is less predictable. In this surgery, the complications mainly concern the prosthesis, such as implant deflation, capsular contracture, palpability, or malposition. We, therefore, propose a different and new technique that avoids breast prosthesis, combining mastopexy and autologous augmentation with fat grafts.

View Article and Find Full Text PDF

Autologous therapies using platelet-rich plasma (PRP) need meticulous preparation-currently, no standardised preparation technique exists. Processing Quantitative Standards (PQSs) define manufacturing quantitative variables (such as time, volume and pressure). Processing Qualitative Standards (PQLSs) define the quality of the materials and methods of manufacturing.

View Article and Find Full Text PDF

Background: Autologous fat grafting has broad applications in reconstructive and aesthetic breast surgery as a natural filler and for its regenerative purposes. Despite the widespread use of fat grafting, there remains no shared consensus on what constitutes the optimal fat grafting technique and its oncological safety. For this reason, the authors of this study have organized a Survey and an International Consensus Conference that was held at the Aesthetic Breast Meeting in Milan (December 15, 2018).

View Article and Find Full Text PDF

We report high room-temperature mobility in single-layer graphene grown by chemical vapor deposition (CVD) after wet transfer on SiO and hexagonal boron nitride (hBN) encapsulation. By removing contaminations, trapped at the interfaces between single-crystal graphene and hBN, we achieve mobilities up to ∼70000 cm V s at room temperature and ∼120 000 cm V s at 9K. These are more than twice those of previous wet-transferred graphene and comparable to samples prepared by dry transfer.

View Article and Find Full Text PDF

Platelet rich plasma (PRP) and Micrografts containing human follicle mesenchymal stem cells (HF-MSCs) were tried as a potential treatment for androgenetic alopecia (AGA). However, little to no work has yet to be seen wherein the bio-molecular pathway of HF-MSCs or PRP treatments were analyzed. The aims of this work are to report the clinical effectiveness of HF-MSCs and platelet-rich plasma evaluating and reviewing the most updated information related to the bio-molecular pathway.

View Article and Find Full Text PDF

In monolayer (1L) transition metal dichalcogenides (TMDs) the valence and conduction bands are spin-split because of the strong spin-orbit interaction. In tungsten-based TMDs the spin-ordering of the conduction band is such that the so-called dark excitons, consisting of electrons and holes with opposite spin orientation, have lower energy than A excitons. The transition from bright to dark excitons involves the scattering of electrons from the upper to the lower conduction band at the K point of the Brillouin zone, with detrimental effects for the optoelectronic response of 1L-TMDs, since this reduces their light emission efficiency.

View Article and Find Full Text PDF

Monolayer transition metal dichalcogenides have strong Coulomb-mediated many-body interactions. Theoretical studies have predicted the existence of numerous multi-particle excitonic states. Two-particle excitons and three-particle trions have been identified by their optical signatures.

View Article and Find Full Text PDF

Nanoactuators are a key component for developing nanomachinery. Here, an electrically driven device yielding actuation stresses exceeding 1 MPa withintegrated optical readout is demonstrated. 10 nm thick Al O electrolyte films are sandwiched between graphene and Au electrodes.

View Article and Find Full Text PDF

Layers of transition metal dichalcogenides (TMDs) combine the enhanced effects of correlations associated with the two-dimensional limit with electrostatic control over their phase transitions by means of an electric field. Several semiconducting TMDs, such as MoS, develop superconductivity (SC) at their surface when doped with an electrostatic field, but the mechanism is still debated. It is often assumed that Cooper pairs reside only in the two electron pockets at the K/K' points of the Brillouin Zone.

View Article and Find Full Text PDF

Optical harmonic generation occurs when high intensity light (>10 W m) interacts with a nonlinear material. Electrical control of the nonlinear optical response enables applications such as gate-tunable switches and frequency converters. Graphene displays exceptionally strong light-matter interaction and electrically and broadband tunable third-order nonlinear susceptibility.

View Article and Find Full Text PDF

We report vertically illuminated, resonant cavity enhanced, graphene-Si Schottky photodetectors (PDs) operating at 1550 nm. These exploit internal photoemission at the graphene-Si interface. To obtain spectral selectivity and enhance responsivity, the PDs are integrated with an optical cavity, resulting in multiple reflections at resonance, and enhanced absorption in graphene.

View Article and Find Full Text PDF

We present flexible photodetectors (PDs) for visible wavelengths fabricated by stacking centimeter-scale chemical vapor deposited (CVD) single layer graphene (SLG) and single layer CVD MoS2, both wet transferred onto a flexible polyethylene terephthalate substrate. The operation mechanism relies on injection of photoexcited electrons from MoS2 to the SLG channel. The external responsivity is 45.

View Article and Find Full Text PDF

We report an on-chip integrated metal graphene-silicon plasmonic Schottky photodetector with 85 mA/W responsivity at 1.55 μm and 7% internal quantum efficiency. This is one order of magnitude higher than metal-silicon Schottky photodetectors operated in the same conditions.

View Article and Find Full Text PDF

Transition metal dichalcogenides (TMDs) are emerging as promising two-dimensional (2D) semiconductors for optoelectronic and flexible devices. However, a microscopic explanation of their photophysics, of pivotal importance for the understanding and optimization of device operation, is still lacking. Here, we use femtosecond transient absorption spectroscopy, with pump pulse tunability and broadband probing, to monitor the relaxation dynamics of single-layer MoS2 over the entire visible range, upon photoexcitation of different excitonic transitions.

View Article and Find Full Text PDF

Superconducting nanowire avalanche single-photon detectors (SNAPs) with n parallel nanowires are advantageous over single-nanowire detectors because their output signal amplitude scales linearly with n. However, the SNAP architecture has not been viably demonstrated for n > 4. To increase n for larger signal amplification, we designed a multi-stage, successive-avalanche architecture which used nanowires, connected via choke inductors in a binary-tree layout.

View Article and Find Full Text PDF