Publications by authors named "Domenico Spina"

A novel wideband parametric baseband macromodeling technique for passive photonic devices and circuits is presented. It allows to efficiently estimate the baseband scattering representations of a linear, passive photonic system as a function of a set of design variables, such as geometrical layout or substrate features. The proposed technique relies on the interpolation of macromodels computed via a complex vector fitting (CVF) algorithm, by adopting a methodology based on amplitude and frequency scaling that preserves, by construction, the physical properties of the system, such as causality, stability and passivity.

View Article and Find Full Text PDF

Rational: Acute lung injury (ALI) is a common complication after intestinal ischemia and reperfusion (I/R) injury that can lead to acute respiratory distress syndrome (ARDS). We have previously demonstrated that females are protected against lung damage induced by intestinal I/R through an estrogen mediated mechanism.

Objectives: To investigate the effect of obesity on ALI induced by intestinal I/R in female mice.

View Article and Find Full Text PDF

Background: Cough is a common presenting symptom in patients with idiopathic interstitial pneumonia (IIP); it is often disabling, and lacks effective treatment. Studies in animals suggest that carcainium chloride, a quaternary derivative of the local anesthetic lidocaine, is able to inhibit experimentally induced cough by a mechanism of action distinct from that of lidocaine.

Objective: To determine the effectiveness of aerosolised carcainium chloride (VRP700) in controlling cough in patients with IIP.

View Article and Find Full Text PDF

It is now recognized that certain polysaccharides can exhibit anti-inflammatory activity, including the glycosaminoglycan (GAG) heparin that is widely used as an anti-coagulant drug. However, it would be desirable to identify molecules that retain the anti-inflammatory actions of heparin, but that are devoid of significant anti-coagulant activity. In the present study we have identified a number of novel GAG and GAG-like polysaccharides (VRP327) from marine organisms, most of which were resistant to digestion by heparinase II and chondroitinase ABC.

View Article and Find Full Text PDF

Lipid nanocapsules (LNCs) are semi-rigid spherical capsules with a triglyceride core that present a promising formulation option for the pulmonary delivery of drugs with poor aqueous solubility. Whilst the biodistribution of LNCs of different size has been studied following intravenous administration, the fate of LNCs following pulmonary delivery has not been reported. We investigated quantitatively whether lung inflammation affects the clearance of 50nm lipid nanocapsules, or is exacerbated by their pulmonary administration.

View Article and Find Full Text PDF

Cough remains a major unmet clinical need, and preclinical animal models are not predictive for new antitussive agents. We have investigated the mechanisms and pharmacological sensitivity of ozone-induced hypertussive responses in rabbits and guinea pigs. Ozone induced a significant increase in cough frequency and a decrease in time to first cough to inhaled citric acid in both conscious guinea pigs and rabbits.

View Article and Find Full Text PDF

Bronchodilators are mainstay for the symptomatic treatment of chronic obstructive pulmonary disease (COPD) and the introduction of long-acting bronchodilators has led to an improvement in the maintenance treatment of this disease. Various clinical trials have evaluated the effects of fixed dose long-acting β2-agonists (LABA)/long-acting anti-muscarinics (LAMA) combinations and documented greater improvements in spirometry but such improvements do not always translate to greater improvements in symptom scores or reduction in the rates of exacerbation compared with a single component drug. An analysis of whether this significantly greater change in spirometry with combination therapy is additive or synergistic was undertaken and is the subject of this review.

View Article and Find Full Text PDF

Heparanase is an endo-β-glucuronidase that specifically cleaves heparan sulfate proteoglycans in the extracellular matrix. Expression of this enzyme is increased in several pathological conditions including inflammation. We have investigated the role of heparanase in pulmonary inflammation in the context of allergic and non-allergic pulmonary cell recruitment using heparanase knockout (Hpa-/-) mice as a model.

View Article and Find Full Text PDF

Pulmonary inflammation can contribute to the development of lung cancer in humans. We investigated whether pulmonary inflammation alters the genotoxicity of polycyclic aromatic hydrocarbons (PAHs) in the lungs of mice and what mechanisms are involved. To model nonallergic acute inflammation, mice were exposed intranasally to lipopolysaccharide (LPS; 20 µg/mouse) and then instilled intratracheally with benzo[a]pyrene (BaP; 0.

View Article and Find Full Text PDF

Cannabis has been demonstrated to have bronchodilator, anti-inflammatory, and antitussive activity in the airways, but information on the active cannabinoids, their receptors, and the mechanisms for these effects is limited. We compared the effects of Δ(9)-tetrahydrocannabinol, cannabidiol, cannabigerol, cannabichromene, cannabidiolic acid, and tetrahydrocannabivarin on contractions of the guinea pig-isolated trachea and bronchoconstriction induced by nerve stimulation or methacholine in anesthetized guinea pigs following exposure to saline or the proinflammatory cytokine, tumor necrosis factor α (TNF-α). CP55940 (2-[(1R,2R,5R)-5-hydroxy-2-(3-hydroxypropyl) cyclohexyl]-5-(2-methyloctan-2-yl)phenol), a synthetic cannabinoid agonist, was also investigated in vitro.

View Article and Find Full Text PDF

The small GTPase Rac is required for neutrophil recruitment during inflammation, but its guanine-nucleotide exchange factor (GEF) activators seem dispensable for this process, which led us to investigate the possibility of cooperation between Rac-GEF families. Thioglycollate-induced neutrophil recruitment into the peritoneum was more severely impaired in P-Rex1(-/-) Vav1(-/-) (P1V1) or P-Rex1(-/-) Vav3(-/-) (P1V3) mice than in P-Rex null or Vav null mice, suggesting cooperation between P-Rex and Vav Rac-GEFs in this process. Neutrophil transmigration and airway infiltration were all but lost in P1V1 and P1V3 mice during lipopolysaccharide (LPS)-induced pulmonary inflammation, with altered intercellular adhesion molecule 1-dependent slow neutrophil rolling and strongly reduced L- and E-selectin-dependent adhesion in airway postcapillary venules.

View Article and Find Full Text PDF

Radiotelemetry was used to investigate the in vivo cardiovascular and activity phenotype of both TRPA1 (transient receptor potential ankyrin 1) wild-type (WT) and TRPA1 knockout (KO) mice. After baseline recording, experimental hypertension was induced using angiotensin II infusion (1.1 mg(-1) kg(-1) a day, for 14 days).

View Article and Find Full Text PDF

Sepsis and sepsis-associated multiorgan failure represent the major cause of mortality in intensive care units worldwide. Cardiovascular dysfunction, a key component of sepsis pathogenesis, has received much research interest, although research translatability remains severely limited. There is a critical need for more comprehensive preclinical sepsis models, with more clinically relevant end points, such as microvascular perfusion.

View Article and Find Full Text PDF

Fucosylated chondroitin sulfate (fCS) extracted from the sea cucumber Holothuria forskali is composed of the following repeating trisaccharide unit: → 3)GalNAcβ4,6S(1 → 4) [FucαX(1 → 3)]GlcAβ(1 →, where X stands for different sulfation patterns of fucose (X = 3,4S (46%), 2,4S (39%), and 4S (15%)). As revealed by NMR and molecular dynamics simulations, the fCS repeating unit adopts a conformation similar to that of the Le(x) blood group determinant, bringing several sulfate groups into close proximity and creating large negative patches distributed along the helical skeleton of the CS backbone. This may explain the high affinity of fCS oligosaccharides for L- and P-selectins as determined by microarray binding of fCS oligosaccharides prepared by Cu(2+)-catalyzed Fenton-type and photochemical depolymerization.

View Article and Find Full Text PDF

Overproduction of nitric oxide (NO) by inducible NO synthase contributes toward refractory hypotension, impaired microvascular perfusion, and end-organ damage in septic shock patients. Tetrahydrobiopterin (BH4) is an essential NOS cofactor. GTP cyclohydrolase 1 (GCH1) is the rate-limiting enzyme for BH4 biosynthesis.

View Article and Find Full Text PDF

To date, the role of nanoparticle surface hydrophobicity has not been investigated quantitatively in relation to pulmonary biocompatibility. A panel of nanoparticles spanning three different biomaterial types, pegylated lipid nanocapsules, polyvinyl acetate (PVAc) and polystyrene nanoparticles, were characterized for size, surface charge, and stability in biofluids. Surface hydrophobicity of five nanoparticles (50-150nm) was quantified using hydrophobic interaction chromatography (HIC) and classified using a purpose-developed hydrophobicity scale: the HIC index, range from 0.

View Article and Find Full Text PDF

Inhaled nanomaterials present a challenge to traditional methods and understanding of respiratory toxicology. In this study, a non-targeted metabolomics approach was used to investigate relationships between nanoparticle hydrophobicity, inflammatory outcomes and the metabolic fingerprint in bronchoalveolar fluid. Measures of acute lung toxicity were assessed following single-dose intratracheal administration of nanoparticles with varying surface hydrophobicity (i.

View Article and Find Full Text PDF

The rabbit (Oryctolagus cuniculus) is an important animal species widely used for biomedical research purposes, meat production and as a pet animal. There are numerous biomedical and scientific applications that include important areas such as antibody production, muscle, eye and circulatory physiology. The use of proteomics has been limited when considering this species.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers evaluated a new inhaled drug, RPL554, which combines phosphodiesterase 3 and 4 inhibition, to see if it could improve treatment for patients with severe asthma or COPD who don't respond well to existing medications.
  • The study consisted of four clinical trials conducted in the Netherlands, Italy, and the UK between 2009 and 2013, involving healthy participants and those with mild asthma or COPD, to assess RPL554’s safety, effectiveness in bronchodilation, and anti-inflammatory properties.
  • Results showed RPL554 potentially provides bronchodilation and reduces inflammation, indicating it could be a promising treatment option for patients with severe respiratory conditions.
View Article and Find Full Text PDF

Purpose Of Review: β2-Agonists and muscarinic antagonists are widely used to treat asthma and chronic obstructive pulmonary disease (COPD), and a number of novel drug targets are being investigated for potential clinical utility. This review will summarize current developments in the field.

Recent Findings: The clinical effectiveness of a number of once a day inhaled β2-agonists and muscarinic antagonists is a major advance providing sustained bronchodilation in asthma and COPD.

View Article and Find Full Text PDF
Article Synopsis
  • - The study focuses on the effects of RPL554, a dual inhibitor of PDE3 and PDE4 enzymes, on airway smooth muscle (ASM) relaxation and its interaction with muscarinic receptor antagonists and a β2-agonist.
  • - RPL554 was found to significantly inhibit contractions induced by electrical stimulation, acetylcholine, and histamine in isolated human bronchi, demonstrating high effectiveness in promoting muscle relaxation.
  • - Notable synergistic interactions were observed between RPL554 and atropine or glycopyrrolate, suggesting that RPL554 could offer a promising treatment for airway diseases when used alone or in combination with other drugs.
View Article and Find Full Text PDF

Phosphodiesterases (PDEs) are a family of enzymes which catalyse the metabolism of the intracellular cyclic nucleotides, c-AMP and c-GMP that are expressed in a variety of cell types and in the context of respiratory diseases, It is now recognised that the use of PDE3, PDE4 and mixed PDE3/4 inhibitors can provide clinical benefit to patients with asthma or chronic obstructive pulmonary disease (COPD). The orally active PDE4 inhibitor Roflumilast-n-oxide has been approved for treatment of severe exacerbations of COPD as add-on therapy to standard drugs. This review discusses the involvement of PDEs in airway diseases and various strategies that are currently being pursued to improve efficacy and reduce side-effects of PDE4 inhibitors, including delivery via the inhaled route, mixed PDE inhibitors and/or antisense biologicals targeted towards PDE4.

View Article and Find Full Text PDF

Chaperonin 60.1 from Mycobacterium tuberculosis suppressed allergic lung inflammation and bronchial hyperresponsiveness in mice by a mechanism that is yet to be clarified. To investigate the possible antiinflammatory mechanism(s) of action of Cpn60.

View Article and Find Full Text PDF