Despite the importance of bacteria in aquatic ecosystems and their predictable diversity patterns across space and time, biomonitoring tools for status assessment relying on these organisms are widely lacking. This is partly due to insufficient data and models to identify reliable microbial predictors. Here, we show metabarcoding in combination with multivariate statistics and machine learning allows to identify bacterial bioindicators for existing biological status classification systems.
View Article and Find Full Text PDFMolecular diagnostic methods are increasingly applied for food and environmental analysis. Since several steps are involved in sample processing which can affect the outcome (e.g.
View Article and Find Full Text PDFRivers are important for drinking water supply worldwide. However, they are often impacted by pathogen discharges via wastewater treatment plants (WWTP) and combined sewer overflows (CSO). To date, accurate predictions of the effects of future changes and pollution control measures on the microbiological water quality of rivers considering safe drinking water production are hindered due to the uncertainty of the pathogen source and transport variables.
View Article and Find Full Text PDFA novel concept for fecal pollution analysis was applied at alluvial water resources to substantially extend the information provided by fecal indicator bacteria (FIB). FIB data were linked to river connectivity and genetic microbial source tracking (MST). The concept was demonstrated at the Danube River and its associated backwater area downstream of the city of Vienna, using a comprehensive 3-year data set (10 selected sites, n = 317 samples).
View Article and Find Full Text PDFMicrobial water quality evaluations are essential for determining the vulnerability of subsurface drinking water sources to fecal pathogen intrusion. Rather than directly monitor waterborne pathogens using culture- or enumeration-based techniques, the potential of assessing bacterial community using 16S rRNA gene amplicon sequencing to support these evaluations was investigated. A framework for analyzing 16S rRNA gene amplicon sequencing results featuring negative-binomial generalized linear models is demonstrated, and applied to bacterial taxa sequences in purge water samples collected from a shallow, highly aerobic, unconfined aquifer.
View Article and Find Full Text PDFAlpine karst aquifers are important groundwater resources for the provision of drinking water all around the world. Yet, due to difficult accessibility and long-standing methodological limitations, the microbiology of these systems has long been understudied. The aim of the present study was to investigate the structure and dynamics of bacterial communities in spring water of an alpine limestone karst aquifer (LKAS2) under different hydrological conditions (base vs.
View Article and Find Full Text PDFThis study used automated enzymatic activity measurements conducted from a mobile research vessel to detect the spatial variability of beta‑d‑glucuronidase (GLUC) activity in large freshwater bodies. The ship-borne observations provided the first high-resolution spatial data of GLUC activity in large water bodies as rapid indication of fecal pollution and were used to identify associations with hydrological conditions and land use. The utility of this novel approach for water quality screening was evaluated by surveys of the Columbia River, the Mississippi River and the Yahara Lakes, covering up to a 500 km river course and 50 km lake area.
View Article and Find Full Text PDFQuantitative information regarding the presence of , intestinal enterococci, and in poikilotherms is notably scarce. Therefore, this study was designed to allow a systematic comparison of the occurrence of these standard fecal indicator bacteria (SFIB) in the excreta of wild homeothermic (ruminants, boars, carnivores, and birds) and poikilothermic (earthworms, gastropods, frogs, and fish) animals inhabiting an alluvial backwater area in eastern Austria. With the exception of earthworms, the average concentrations of and enterococci in the excreta of poikilotherms were equal to or only slightly lower than those observed in homeothermic excreta and were 1 to 4 orders of magnitude higher than the levels observed in the ambient soils and sediments.
View Article and Find Full Text PDFOver the past 15 years, pioneering interdisciplinary research has been performed on the microbiology of hydrogeologically well-defined alpine karst springs located in the Northern Calcareous Alps (NCA) of Austria. This article gives an overview on these activities and links them to other relevant research. Results from the NCA springs and comparable sites revealed that spring water harbors abundant natural microbial communities even in aquifers with high water residence times and the absence of immediate surface influence.
View Article and Find Full Text PDFNumerous bacterial genetic markers are available for the molecular detection of human sources of fecal pollution in environmental waters. However, widespread application is hindered by a lack of knowledge regarding geographical stability, limiting implementation to a small number of well-characterized regions. This study investigates the geographic distribution of five human-associated genetic markers (HF183/BFDrev, HF183/BacR287, BacHum-UCD, BacH, and Lachno2) in municipal wastewaters (raw and treated) from 29 urban and rural wastewater treatment plants (750-4 400 000 population equivalents) from 13 countries spanning six continents.
View Article and Find Full Text PDFNitrospira are chemolithoautotrophic nitrite-oxidizing bacteria that catalyze the second step of nitrification in most oxic habitats and are important for excess nitrogen removal from sewage in wastewater treatment plants (WWTPs). To date, little is known about their diversity and ecological niche partitioning within complex communities. In this study, the fine-scale community structure and function of Nitrospira was analyzed in two full-scale WWTPs as model ecosystems.
View Article and Find Full Text PDF